Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene

Abstract

Graphene’s extremely small intrinsic spin–orbit (SO) interaction1 makes the realization of many interesting phenomena such as topological/quantum spin Hall states2,3 and the spin Hall effect4 (SHE) practically impossible. Recently, it was predicted1,5,6,7 that the introduction of adatoms in graphene would enhance the SO interaction by the conversion of sp2 to sp3 bonds. However, introducing adatoms and yet keeping graphene metallic, that is, without creating electronic (Anderson) localization8, is experimentally challenging. Here, we show that the controlled addition of small amounts of covalently bonded hydrogen atoms is sufficient to induce a colossal enhancement of the SO interaction by three orders of magnitude. This results in a SHE at zero external magnetic fields at room temperature, with non-local spin signals up to 100 Ω; orders of magnitude larger than in metals9. The non-local SHE is, further, directly confirmed by Larmor spin-precession measurements. From this and the length dependence of the non-local signal we extract a spin relaxation length of 1 μm, a spin relaxation time of 90 ps and a SO strength of 2.5 meV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device characterization.
Figure 2: Room-temperature measurements of non-local signal.
Figure 3: Magnetic field dependence of RNL.
Figure 4: Length and width dependence of RNL at room temperature.

Similar content being viewed by others

References

  1. Castro Neto, A. H. & Guinea, F. Impurity-induced spin–orbit coupling in graphene. Phys. Rev. Lett. 103, 026804 (2009).

    Article  ADS  Google Scholar 

  2. Kane, C. L. & Mele, E. J. Z(2) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  3. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  4. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  Google Scholar 

  5. Schmidt, M. J. & Loss, D. Edge states and enhanced spin–orbit interaction at graphene/graphane interfaces. Phys. Rev. B 81, 165439 (2010).

    Article  ADS  Google Scholar 

  6. Conan, W., Jun, H., Jason, A., Marcel, F. & Ruqian, W. Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys. Rev. X 1, 021001 (2011).

    Google Scholar 

  7. Zhou, J., Liang, Q. F. & Dong, J. M. Enhanced spin–orbit coupling in hydrogenated and fluorinated graphene. Carbon 48, 1405–1409 (2010).

    Article  Google Scholar 

  8. Rappoport, T. G., Uchoa, B. & Castro Neto, A. H. Magnetism and magnetotransport in disordered graphene. Phys. Rev. B 80, 245408 (2009).

    Article  ADS  Google Scholar 

  9. Seki, T. et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Mater. 7, 125–129 (2008).

    Article  ADS  Google Scholar 

  10. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  11. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  12. Kim, E. A. & Castro Neto, A. H. Graphene as an electronic membrane. Europhys. Lett. 84, 57007 (2008).

    Article  ADS  Google Scholar 

  13. Loh, K. P., Bao, Q. L., Ang, P. K. & Yang, J. X. The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010).

    Article  Google Scholar 

  14. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009).

    Article  ADS  Google Scholar 

  15. Nair, R. R. et al. Fluorographene: A two-dimensional counterpart of teflon. Small 6, 2877–2884 (2010).

    Article  Google Scholar 

  16. Fert, A. & Levy, P. M. Spin Hall effect induced by resonant scattering on impurities in metals. Phys. Rev. Lett. 106, 157208 (2011).

    Article  ADS  Google Scholar 

  17. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  ADS  Google Scholar 

  18. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    Article  ADS  Google Scholar 

  19. Jespersen, T. S. et al. Gate-dependent spin–orbit coupling in multielectron carbon nanotubes. Nature Phys. 7, 348–353 (2011).

    Article  ADS  Google Scholar 

  20. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    ADS  Google Scholar 

  21. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  ADS  Google Scholar 

  22. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  ADS  Google Scholar 

  23. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011).

    Article  ADS  Google Scholar 

  24. Brüne, C. et al. Spin polarization of the quantum spin Hall edge states. Nature Phys. 8, 485–490 (2012).

    Article  ADS  Google Scholar 

  25. Ryu, S. et al. Reversible basal plane hydrogenation of graphene. Nano Lett. 8, 4597–4602 (2008).

    Article  ADS  Google Scholar 

  26. Jaiswal, M. et al. Controlled hydrogenation of graphene sheets and nanoribbons. ACS Nano 5, 888–896 (2011).

    Article  Google Scholar 

  27. Cancado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article  ADS  Google Scholar 

  28. Hornekaer, L. et al. Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys. Rev. Lett. 97, 186102 (2006).

    Article  ADS  Google Scholar 

  29. Abanin, D. A., Shytov, A. V., Levitov, L. S. & Halperin, B. I. Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime. Phys. Rev. B 79, 035304 (2009).

    Article  ADS  Google Scholar 

  30. Mihajlovic, G., Pearson, J. E., Garcia, M. A., Bader, S. D. & Hoffmann, A. Negative nonlocal resistance in mesoscopic gold Hall bars: Absence of the giant spin Hall effect. Phys. Rev. Lett. 103, 166601 (2009).

    Article  ADS  Google Scholar 

  31. Tombros, N. et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  ADS  Google Scholar 

  32. Yang, T-Y. et al. Observation of long spin-relaxation times in bilayer graphene at room temperature. Phys. Rev. Lett. 107, 047206 (2011).

    Article  ADS  Google Scholar 

  33. Avsar, A. et al. Toward wafer scale fabrication of graphene based spin valve devices. Nano Lett. 11, 2363–2368 (2011).

    Article  ADS  Google Scholar 

  34. Patra, A. K. et al. Dynamic spin injection into chemical vapor deposited graphene. Appl. Phys. Lett. 101, 162407 (2012).

    Article  ADS  Google Scholar 

  35. McCreary, K. M., Swartz, A. G., Han, W., Fabian, J. & Kawakami, R. K. Magnetic moment formation in graphene detected by scattering of pure spin currents. Phys. Rev. Lett. 109, 186604 (2012).

    Article  ADS  Google Scholar 

  36. Kettemann, S. Dimensional control of antilocalization and spin relaxation in quantum wires. Phys. Rev. Lett. 98, 176808 (2007).

    Article  ADS  Google Scholar 

  37. Paul, W. & Stefan, K. in Handbook of Nanophysics: Nanotubes and Nanowires Ch 28 (CRC Press, 2010).

    Google Scholar 

  38. Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin–orbit-mediated spin relaxation in graphene. Phys. Rev. Lett. 103, 146801 (2009).

    Article  ADS  Google Scholar 

  39. Ochoa, H., Castro Neto, A. H. & Guinea, F. Elliot–Yafet mechanism in graphene. Phys. Rev. Lett. 108, 206808 (2012).

    Article  ADS  Google Scholar 

  40. Konschuh, S., Gmitra, M. & Fabian, J. Tight-binding theory of the spin–orbit coupling in graphene. Phys. Rev. B 82, 245412 (2010).

    Article  ADS  Google Scholar 

  41. Duplock, E. J., Scheffler, M. & Lindan, P. J. D. Hallmark of perfect graphene. Phys. Rev. Lett. 92, 225502 (2004).

    Article  ADS  Google Scholar 

  42. Maekawa, S. (ed.) in Concepts in Spin Electronics Ch. 8, 363–367 (Oxford Univ. Press, 2006).

Download references

Acknowledgements

We thank A. Avsar, A. Pachoud, J. You and M. A. Cazalilla for their help and useful discussions. This work was supported by the Singapore National Research Foundation Fellowship award (RF2008-07-R-144-000-245-281), the NRF-CRP award ‘Novel 2D materials with tailored properties: beyond graphene’ (R-144-000-295-281) and the Singapore Millennium Foundation-NUS Research Horizons award (R-144-001-271-592; R-144-001-271-646).

Author information

Authors and Affiliations

Authors

Contributions

B.Ö. devised and supervised the project. J.B. and B.Ö. designed the experiments. J.B. and G.K.W.K. performed the experiments. A.H.C.N. provided the theoretical work. All authors carried out the data analysis and discussed the results. J.B., A.H.C.N. and B.Ö. co-wrote the paper.

Corresponding author

Correspondence to Barbaros Özyilmaz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, J., Kok Wai Koon, G., Jaiswal, M. et al. Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Phys 9, 284–287 (2013). https://doi.org/10.1038/nphys2576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2576

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing