Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources

Abstract

X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics and materials science. For biological tissue samples, polymers or fibre composites, however, the use of conventional X-ray radiography is limited due to their weak absorption. This is resolved at highly brilliant X-ray synchrotron or micro-focus sources by using phase-sensitive imaging methods to improve the contrast1,2. However, the requirements of the illuminating radiation mean that hard-X-ray phase-sensitive imaging has until now been impractical with more readily available X-ray sources, such as X-ray tubes. In this letter, we report how a setup consisting of three transmission gratings can efficiently yield quantitative differential phase-contrast images with conventional X-ray tubes. In contrast with existing techniques, the method requires no spatial or temporal coherence, is mechanically robust, and can be scaled up to large fields of view. Our method provides all the benefits of contrast-enhanced phase-sensitive imaging, but is also fully compatible with conventional absorption radiography. It is applicable to X-ray medical imaging, industrial non-destructive testing, and to other low-brilliance radiation, such as neutrons or atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Talbot–Lau-type hard-X-ray imaging interferometer.
Figure 2: X-ray images and section profiles of a test sample containing one PTFE and two PMMA spheres, retrieved from image data recorded with a standard X-ray tube operated at 40 kV/25 mA.
Figure 3: X-ray images of a small fish retrieved from image data recorded with a standard X-ray tube operated at 40 kV/25 mA.

Similar content being viewed by others

References

  1. Fitzgerald, R. Phase-sensitive X-Ray imaging. Phys. Today 53, 23–27 (2000).

    Article  Google Scholar 

  2. Momose, A. Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt. Express 11, 2303–2314 (2003).

    Article  ADS  Google Scholar 

  3. Bonse, U. & Hart, M. An x-ray interferometer with long separated interfering beam paths. Appl. Phys. Lett. 6, 155–156 (1965).

    Article  ADS  Google Scholar 

  4. Momose, A., Takeda, T., Itai, Y. & Hirano, K. Phase-contrast X-ray computed tomography for observing biological soft tissues. Nature Med. 2, 473–475 (1996).

    Article  Google Scholar 

  5. Ingal, V. N. & Beliaevskaya, E. A. X-ray plane-wave topography observation of the phase contrast from a non-crystalline object. J. Phys. D 28, 2314–2317 (1995).

    Article  ADS  Google Scholar 

  6. Davis, T. J., Gao, D., Gureyev, T. E., Stevenson, A. W. & Wilkins, S. W. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373, 595–598 (1995).

    Article  ADS  Google Scholar 

  7. Chapman, L. D. et al. Diffraction enhanced x-ray imaging. Phys. Med. Biol. 42, 2015–2025 (1997).

    Article  Google Scholar 

  8. Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 66, 5486–5492 (1995).

    Article  ADS  Google Scholar 

  9. Wilkins, S. W., Gureyev, T. E., Gao, D., Pogany, A. & Stevenson, A. W. Phase-contrast imaging using polychromatic hard X-rays. Nature 384, 335–337 (1996).

    Article  ADS  Google Scholar 

  10. Cloetens, P. et al. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl. Phys. Lett. 75, 2912–2914 (1999).

    Article  ADS  Google Scholar 

  11. Nugent, K. A., Gureyev, T. E., Cookson, D. F., Paganin, D. & Barnea, Z. Quantitative phase imaging using hard X rays. Phys. Rev. Lett. 77, 2961–2964 (1996).

    Article  ADS  Google Scholar 

  12. Mayo, S. C. et al. X-ray phase-contrast microscopy and microtomography. Opt. Express 11, 2289–2302 (2003).

    Article  ADS  Google Scholar 

  13. Peele, A. G., De Carlo, F., McMahon, P. J., Dhal, B. B. & Nugent, K. A. X-ray phase contrast tomography with a bending magnet source. Rev. Sci. Instrum. 76, 083707 (2005).

    Article  ADS  Google Scholar 

  14. Als-Nielsen, J. & McMorrow, D. Elements of Modern X-Ray Physics (Wiley, New York, 2001).

    Google Scholar 

  15. McMahon, P. J., Allman, B. E., Arif, M., Werner, S. A. & Nugent, K. A. Quantitative phase radiography with polychromatic neutrons. Phys. Rev. Lett. 91, 145502 (2003).

    Article  ADS  Google Scholar 

  16. Keren, E. & Kafri, O. Diffraction effects in moire deflectometry. J. Opt. Soc. Am. A 2, 111–120 (1985).

    Article  ADS  Google Scholar 

  17. Kafri, O. & Glatt, I. The Physics of Moire Metrology (Wiley, New York, 1990).

    Google Scholar 

  18. Ress, D. et al. Measurement of laser-plasma electron density with a soft x-ray laser moire deflectometer. Science 265, 514–517 (1994).

    Article  ADS  Google Scholar 

  19. Weitkamp, T. et al. Hard X-ray phase imaging and tomography with a grating interferometer. Proc. SPIE 5535, 137–142 (2004).

    Article  ADS  Google Scholar 

  20. Weitkamp, T. et al. Quantitative X-ray phase imaging with a grating interferometer. Opt. Express 13, 6296–6304 (2005).

    Article  ADS  Google Scholar 

  21. Born, M. & Wolf, E. Principles of Optics (Pergamon, Oxford, 1980).

    Google Scholar 

  22. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

  23. Pagot, E. et al. Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging. Phys. Med. Biol. 50, 709–724 (2005).

    Article  Google Scholar 

  24. Keith, D. W., Ekstrom, C. R., Turchette, Q. A. & Pritchard, D. E. An interferometer for atoms. Phys. Rev. Lett. 66, 2693–2696 (1991).

    Article  ADS  Google Scholar 

  25. David, C., Ziegler, E. & Nöhammer, B. Wet-etched diffractive lenses for hard X-rays. J. Synchrotron Radiat. 8, 1054–1055 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of C. Grünzweig in the measurements and P. R. Willmott for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Pfeiffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, F., Weitkamp, T., Bunk, O. et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nature Phys 2, 258–261 (2006). https://doi.org/10.1038/nphys265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing