Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of micro–macro entanglement of light

This article has been updated

Abstract

Schrödinger’s famous thought experiment1 involves a (macroscopic) cat whose quantum state becomes entangled with that of a (microscopic) decaying nucleus. The creation of such micro–macro entanglement is being pursued in several fields, including atomic ensembles2, superconducting circuits3, electro-mechanical4 and opto-mechanical5 systems. Here we experimentally demonstrate the micro–macro entanglement of light. The macro system involves over a hundred million photons, whereas the micro system is at the single-photon level. We show that microscopic quantum fluctuations (in field quadrature measurements) on one side are correlated with macroscopic fluctuations (in the photon number statistics) on the other side. Further, we demonstrate entanglement by bringing the macroscopic state back to the single-photon level and performing full quantum state tomography of the final state. Although Schrödinger’s thought experiment was originally intended to convey the absurdity of applying quantum mechanics to macroscopic objects, this experiment and related ones suggest that it may apply on all scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the experiment.
Figure 2: Photon number statistics of the state in Bob’s channel that is conditionally prepared by Alice’s quadrature measurement.
Figure 3: Homodyne tomography of the micro–macro entangled state after undisplacing Bob’s mode.
Figure 4: Implementation of the set-up.

Similar content being viewed by others

Change history

  • 25 July 2013

    In the version of this Letter originally published online, in Fig. 1, panels b and c were transposed. This error has now been corrected in all versions of the Letter.

References

  1. Schrödinger, E. Die gegenwaertige Situation in der Quantenmechanik. Naturwissenschaften 23, 823–828 (1935).

    Article  ADS  Google Scholar 

  2. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    Article  ADS  Google Scholar 

  3. Neeley, M. et al. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature Phys. 4, 523–526 (2008).

    Article  Google Scholar 

  4. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  5. Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).

    Article  ADS  Google Scholar 

  6. De Martini, F., Sciarrino, F. & Vitelli, C. Entanglement test on a microscopic-macroscopic system. Phys. Rev. Lett. 100, 253601 (2008).

    Article  ADS  Google Scholar 

  7. Sekatski, P. et al. Proposal for exploring macroscopic entanglement with a single photon and coherent states. Phys. Rev. A 86, 060301(R) (2012).

    Article  ADS  Google Scholar 

  8. Ghobadi, R., Lvovsky, A. I. & Simon, C. Creating and detecting micro–macro photon-number entanglement by amplifying and de-amplifying a single-photon entangled state. Phys. Rev. Lett. 110, 170406 (2013).

    Article  ADS  Google Scholar 

  9. Sekatski, P., Sanguinetti, B., Pomarico, E., Gisin, N. & Simon, C. Cloning entangled photons to scales one can see. Phys. Rev. A 82, 053814 (2010).

    Article  ADS  Google Scholar 

  10. Raeisi, S., Sekatski, P. & Simon, C. Coarse graining makes it hard to see micro–macro entanglement. Phys. Rev. Lett. 107, 250401 (2011).

    Article  ADS  Google Scholar 

  11. Raeisi, S., Tittel, W. & Simon, C. Proposal for inverting the quantum cloning of photons. Phys. Rev. Lett. 108, 120404 (2012).

    Article  ADS  Google Scholar 

  12. Leggett, A. J. Testing the limits of quantum mechanics: Motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415 (2002).

    Article  ADS  Google Scholar 

  13. Paris, M. G. A. Displacement operator by beam splitter. Phys. Lett. A 217, 78 (1996).

    Article  ADS  Google Scholar 

  14. Lvovsky, A. I. & Babichev, S. A. Synthesis and tomographic characterization of the displaced Fock state of light. Phys. Rev. A 66, 011801(R) (2002).

    Article  ADS  Google Scholar 

  15. Dür, W., Simon, C. & Cirac, J. I. Effective size of certain macroscopic quantum superpositions. Phys. Rev. Lett. 89, 210402 (2002).

    Article  ADS  Google Scholar 

  16. Babichev, S. A., Appel, J. & Lvovsky, A. I. Homodyne tomography characterization and nonlocality of a dual-mode optical qubit. Phys. Rev. Lett. 92, 193601 (2004).

    Article  ADS  Google Scholar 

  17. Lvovsky, A. I. & Raymer, M. G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009).

    Article  ADS  Google Scholar 

  18. Babichev, S. A., Brezger, B. & Lvovsky, A. I. Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004).

    Article  ADS  Google Scholar 

  19. Huisman, S. R. et al. Instant single-photon Fock state tomography. Opt. Lett. 34, 2739–2741 (2009).

    Article  ADS  Google Scholar 

  20. Kumar, R. et al. Versatile wideband balanced detector for quantum optical homodyne tomography. Opt. Commun. 285, 5259 (2012).

    Article  ADS  Google Scholar 

  21. Saunders, D. J., Jones, S. J., Wiseman, H. M. & Pryde, G. J. Experimental EPR-steering using Bell-local states. Nature Phys. 6, 845–849 (2010).

    Article  ADS  Google Scholar 

  22. Ou, Z. Y., Pereira, S.F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).

    Article  ADS  Google Scholar 

  23. Morin, O. et al. Witnessing single-photon entanglement with local homodyne measurements. Phys. Rev. Lett. 110, 130401 (2013).

    Article  ADS  Google Scholar 

  24. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).

    Article  ADS  Google Scholar 

  25. Iskhakov, T. S., Agafonov, I. N., Chekhova, M. V. & Leuchs, G. Polarization-entangled light pulses of 105 photons. Phys. Rev. Lett. 109, 150502 (2012).

    Article  ADS  Google Scholar 

  26. Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    Article  ADS  Google Scholar 

  27. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

    Article  ADS  Google Scholar 

  28. Marquardt, F., Abel, B. & von Delft, J. Measuring the size of a quantum superposition of two many-body states. Phys. Rev. A 78, 012109 (2008).

    Article  ADS  Google Scholar 

  29. Lee, C. W. & Jeong, H. Quantification of macroscopic quantum superpositions within phase space. Phys. Rev. Lett. 106, 220401 (2011).

    Article  ADS  Google Scholar 

  30. Vitelli, C., Spagnolo, N., Toffoli, L., Sciarrino, F. & De Martini, F. Enhanced resolution of lossy interferometry by coherent amplification of single photons. Phys. Rev. Lett. 105, 113602 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was sponsored by NSERC, CIFAR and AITF. A.I.L. is a CIFAR Fellow. We thank N. Brunner, N. Sangouard, N. Gisin, R. Thew, S. Rahimi-Keshari, S. Raeisi and B. Sanders for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.G., A.I.L. and C.S. conceived the experiment. A.I.L. performed the experiment with help from A.C. and A.S.P. A.I.L. and C.S. wrote the paper with input from A.S.P., R.G. and A.C.

Corresponding author

Correspondence to A. I. Lvovsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lvovsky, A., Ghobadi, R., Chandra, A. et al. Observation of micro–macro entanglement of light. Nature Phys 9, 541–544 (2013). https://doi.org/10.1038/nphys2682

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2682

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing