Abstract
The third law of thermodynamics dictates that the entropy of a system in thermal equilibrium goes to zero as its temperature approaches absolute zero. In ice, however, a ‘zero point’ or residual entropy can be measured—attributable to a high degeneracy in the energetically preferred positions of hydrogen ions associated with the so-called ‘ice rules’1,2. Remarkably, the spins in certain magnetic materials with the pyrochlore structure of corner-sharing tetrahedra, called ‘spin ice’, have an equivalent degeneracy of energetically preferred states, and also have a zero-point entropy3,4,5,6,7. Here, we chemically alter Ho2Ti2O7 spin ice by ‘stuffing’ extra Ho magnetic moments into otherwise non-magnetic Ti sites surrounding the Ho tetrahedra. The resulting series, Ho2(Ti2−xHox)O7−x/2, provides a unique opportunity to study the effects of increased connectivity between spins on a frustrated lattice. Surprisingly, the zero-point entropy per spin measured appears unchanged by these excess spins. The results suggest a chemical approach for studying ice-like frustration and other properties of the broad family of geometrically frustrated magnets based on the pyrochlore structure.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Bernal, J. D. & Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).
Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).
Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).
Ramirez, A. P., Hayashi, A., Cava, R. J. & Siddharthan, R. Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999).
Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).
Bramwell, S. T., Gingras, M. J. P. & Holdsworth, P. C. W. in Frustrated Spin Systems (ed. Diep, H. T.) 367–456 (World Scientific, Singapore, 2004).
Higashinaka, R., Fukazawa, H. & Maeno, Y. Anisotropic release of the residual zero-point entropy in the spin ice compound Dy2Ti2O7: Kagome ice behaviour. Phys. Rev. B 68, 014415 (2003).
Ramirez, A. P. in Handbook of Magnetic Materials Vol. 13 (ed. Buschow, K. J. H.) 423–520 (Elsevier Science, Amsterdam, 2001).
Moessner, R. Magnets with strong geometric frustration. Can. J. Phys. 79, 1283–1294 (2001).
Gaulin, B. D. & Gardner, J. S. in Frustrated Spin Systems (ed. Diep, H. T.) 457–490 (World Scientific, Singapore, 2004).
Raju, N. P., Dion, M., Gingras, M. J. P., Mason, T. E. & Greedan, J. E. Transition to long-range magnetic order in the highly frustrated insulating pyrochlore antiferromagnet Gd2Ti2O7 . Phys. Rev. B 59, 14489–14498 (1999).
Ramirez, A. P. et al. Multiple field-induced phase transitions in the geometrically frustrated dipolar magnet: Gd2Ti2O7 . Phys. Rev. Lett. 89, 067202 (2002).
Champion, J. D. M. et al. Er2Ti2O7: evidence of quantum order by disorder in a frustrated antiferromagnet. Phys. Rev. B 68, 020401 (2003).
Hodges, J. A. et al. First-order transition in the spin dynamics of geometrically frustrated Yb2Ti2O7 . Phys. Rev. Lett. 88, 077204 (2002).
Gardner, J. S. et al. Cooperative paramagnetism in the geometrically frustrated pyrochlore antiferromagnet Tb2Ti2O7 . Phys. Rev. Lett. 82, 1012–1015 (1999).
Bramwell, S. T. et al. Spin correlations in Ho2Ti2O7: a dipolar spin ice system. Phys. Rev. Lett. 87, 047205 (2001).
Matsuhira, K., Hinatsu, Y., Tenya, K. & Sakakibara, T. Low temperature magnetic properties of frustrated pyrochlore ferromagnets Ho2Sn2O7 and Ho2Ti2O7 . J. Phys. Condens. Matter 12, L649–L656 (2000).
Fukazawa, H., Melko, R. G., Higashinaka, R., Maeno, Y. & Gingras, M. J. P. Magnetic anisotropy of the spin-ice compound Dy2Ti2O7 . Phys. Rev. B 65, 054410 (2002).
Snyder, J. et al. Low-temperature spin freezing in the Dy2Ti2O7 spin ice. Phys. Rev. B 69, 064414 (2004).
Wiebe, C. R. et al. Frustration-driven spin freezing in the S=1/2 fcc perovskite Sr2MgReO6 . Phys. Rev. B 68, 134410 (2003).
Karunadasa, H., Huang, Q., Ueland, B. G., Schiffer, P. & Cava, R. J. Ba2LnSbO6 and Sr2LnSbO6 (Ln=Dy, Ho, Gd) double perovskites: lanthanides in the geometrically frustrating fcc lattice. Proc. Natl Acad. Sci. USA 100, 8097–8102 (2003).
Subramanian, M. A., Aravamudan, G. & Rao, G. V. S. Oxide pyrochlores—a review. Prog. Solid State Chem. 15, 55–143 (1983).
Sukhanova, G. E., Guseva, K. N., Kolesnikov, A. V. & Shcherbakova, L. G. Phase-equilibria in the TiO2-Ho2O3 system. Inorg. Mater. 18, 1742–1745 (1982).
Shamrai, G. V., Magunov, R. L., Sadkovskaya, L. V., Stasenko, I. V. & Kovalevskaya, I. P. The system Ho2O3-TiO2 . Inorg. Mater. 27, 140–141 (1991).
Snyder, J. Thesis, Pennsylvania State Univ. (2003).
Cornelius, A. L. & Gardner, J. S. Short-range magnetic interactions in the spin-ice compound Ho2Ti2O7 . Phys. Rev. B 64, 060406 (2001).
Melko, R. G., den Hertog, B. C. & Gingras, M. J. P. Long-range order at low temperatures in dipolar spin ice. Phys. Rev. Lett. 87, 067203 (2001).
Siddharthan, R., Shastry, B. S. & Ramirez, A. P. Spin ordering and partial ordering in holmium titanate and related systems. Phys. Rev. B 63, 184412 (2001).
Higashinaka, R. & Maeno, Y. Field-induced transition on a triangular plane in the spin-ice compound Dy2Ti2O7 . Phys. Rev. Lett. 95, 237208 (2005).
Ruff, J. P. C., Melko, R. G. & Gingras, M. J. P. Finite-temperature transitions in dipolar spin ice in a large magnetic field. Phys. Rev. Lett. 95, 097202 (2005).
Matsuhira, K., Hinatsu, Y. & Sakakibara, T. Novel dynamical magnetic properties in the spin ice compound Dy2Ti2O7 . J. Phys. Condens. Matter 13, L737–L746 (2001).
Ramirez, A. P., Espinosa, G. P. & Cooper, A. S. Strong frustration and dilution-enhanced order in a quasi-2D spin glass. Phys. Rev. Lett. 64, 2070–2073 (1990).
Acknowledgements
The authors gratefully acknowledge financial support from the National Science Foundation and helpful discussions with R. Moessner and A. P. Ramirez. R.S.F. thanks the CNPq-Brazil for sponsorship.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Lau, G., Freitas, R., Ueland, B. et al. Zero-point entropy in stuffed spin-ice. Nature Phys 2, 249–253 (2006). https://doi.org/10.1038/nphys270
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys270
This article is cited by
-
Defect-induced monopole injection and manipulation in artificial spin ice
Nature Communications (2022)
-
Superconducting Transport Properties of NiFe Artificial Spin Ice and Nb Hybrid Structure
Journal of Superconductivity and Novel Magnetism (2021)
-
Unveiling the Physics of the Mutual Interactions in Paramagnets
Scientific Reports (2020)
-
Magnetic-charge ordering and phase transitions in monopole-conserved square spin ice
Scientific Reports (2015)
-
Dy2−x Y x Ti2O7: phonon vibration and magnetization with dilution
Rare Metals (2015)