Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Zero-point entropy in stuffed spin-ice

Abstract

The third law of thermodynamics dictates that the entropy of a system in thermal equilibrium goes to zero as its temperature approaches absolute zero. In ice, however, a ‘zero point’ or residual entropy can be measured—attributable to a high degeneracy in the energetically preferred positions of hydrogen ions associated with the so-called ‘ice rules’1,2. Remarkably, the spins in certain magnetic materials with the pyrochlore structure of corner-sharing tetrahedra, called ‘spin ice’, have an equivalent degeneracy of energetically preferred states, and also have a zero-point entropy3,4,5,6,7. Here, we chemically alter Ho2Ti2O7 spin ice by ‘stuffing’ extra Ho magnetic moments into otherwise non-magnetic Ti sites surrounding the Ho tetrahedra. The resulting series, Ho2(Ti2−xHox)O7−x/2, provides a unique opportunity to study the effects of increased connectivity between spins on a frustrated lattice. Surprisingly, the zero-point entropy per spin measured appears unchanged by these excess spins. The results suggest a chemical approach for studying ice-like frustration and other properties of the broad family of geometrically frustrated magnets based on the pyrochlore structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural details of the materials studied: Ho2(Ti2−xHox)O7−x/2.
Figure 2: Temperature dependence of the magnetization.
Figure 3: Thermal characterization of stuffed spin-ice.
Figure 4: The low-temperature a.c. magnetic susceptibility.

Similar content being viewed by others

References

  1. Bernal, J. D. & Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

    Article  ADS  Google Scholar 

  2. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    Article  Google Scholar 

  3. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).

    Article  ADS  Google Scholar 

  4. Ramirez, A. P., Hayashi, A., Cava, R. J. & Siddharthan, R. Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999).

    Article  ADS  Google Scholar 

  5. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  ADS  Google Scholar 

  6. Bramwell, S. T., Gingras, M. J. P. & Holdsworth, P. C. W. in Frustrated Spin Systems (ed. Diep, H. T.) 367–456 (World Scientific, Singapore, 2004).

    Google Scholar 

  7. Higashinaka, R., Fukazawa, H. & Maeno, Y. Anisotropic release of the residual zero-point entropy in the spin ice compound Dy2Ti2O7: Kagome ice behaviour. Phys. Rev. B 68, 014415 (2003).

    Article  ADS  Google Scholar 

  8. Ramirez, A. P. in Handbook of Magnetic Materials Vol. 13 (ed. Buschow, K. J. H.) 423–520 (Elsevier Science, Amsterdam, 2001).

    Google Scholar 

  9. Moessner, R. Magnets with strong geometric frustration. Can. J. Phys. 79, 1283–1294 (2001).

    Article  ADS  Google Scholar 

  10. Gaulin, B. D. & Gardner, J. S. in Frustrated Spin Systems (ed. Diep, H. T.) 457–490 (World Scientific, Singapore, 2004).

    Google Scholar 

  11. Raju, N. P., Dion, M., Gingras, M. J. P., Mason, T. E. & Greedan, J. E. Transition to long-range magnetic order in the highly frustrated insulating pyrochlore antiferromagnet Gd2Ti2O7 . Phys. Rev. B 59, 14489–14498 (1999).

    Article  ADS  Google Scholar 

  12. Ramirez, A. P. et al. Multiple field-induced phase transitions in the geometrically frustrated dipolar magnet: Gd2Ti2O7 . Phys. Rev. Lett. 89, 067202 (2002).

    Article  ADS  Google Scholar 

  13. Champion, J. D. M. et al. Er2Ti2O7: evidence of quantum order by disorder in a frustrated antiferromagnet. Phys. Rev. B 68, 020401 (2003).

    Article  ADS  Google Scholar 

  14. Hodges, J. A. et al. First-order transition in the spin dynamics of geometrically frustrated Yb2Ti2O7 . Phys. Rev. Lett. 88, 077204 (2002).

    Article  ADS  Google Scholar 

  15. Gardner, J. S. et al. Cooperative paramagnetism in the geometrically frustrated pyrochlore antiferromagnet Tb2Ti2O7 . Phys. Rev. Lett. 82, 1012–1015 (1999).

    Article  ADS  Google Scholar 

  16. Bramwell, S. T. et al. Spin correlations in Ho2Ti2O7: a dipolar spin ice system. Phys. Rev. Lett. 87, 047205 (2001).

    Article  ADS  Google Scholar 

  17. Matsuhira, K., Hinatsu, Y., Tenya, K. & Sakakibara, T. Low temperature magnetic properties of frustrated pyrochlore ferromagnets Ho2Sn2O7 and Ho2Ti2O7 . J. Phys. Condens. Matter 12, L649–L656 (2000).

    Article  ADS  Google Scholar 

  18. Fukazawa, H., Melko, R. G., Higashinaka, R., Maeno, Y. & Gingras, M. J. P. Magnetic anisotropy of the spin-ice compound Dy2Ti2O7 . Phys. Rev. B 65, 054410 (2002).

    Article  ADS  Google Scholar 

  19. Snyder, J. et al. Low-temperature spin freezing in the Dy2Ti2O7 spin ice. Phys. Rev. B 69, 064414 (2004).

    Article  ADS  Google Scholar 

  20. Wiebe, C. R. et al. Frustration-driven spin freezing in the S=1/2 fcc perovskite Sr2MgReO6 . Phys. Rev. B 68, 134410 (2003).

    Article  ADS  Google Scholar 

  21. Karunadasa, H., Huang, Q., Ueland, B. G., Schiffer, P. & Cava, R. J. Ba2LnSbO6 and Sr2LnSbO6 (Ln=Dy, Ho, Gd) double perovskites: lanthanides in the geometrically frustrating fcc lattice. Proc. Natl Acad. Sci. USA 100, 8097–8102 (2003).

    Article  ADS  Google Scholar 

  22. Subramanian, M. A., Aravamudan, G. & Rao, G. V. S. Oxide pyrochlores—a review. Prog. Solid State Chem. 15, 55–143 (1983).

    Article  Google Scholar 

  23. Sukhanova, G. E., Guseva, K. N., Kolesnikov, A. V. & Shcherbakova, L. G. Phase-equilibria in the TiO2-Ho2O3 system. Inorg. Mater. 18, 1742–1745 (1982).

    Google Scholar 

  24. Shamrai, G. V., Magunov, R. L., Sadkovskaya, L. V., Stasenko, I. V. & Kovalevskaya, I. P. The system Ho2O3-TiO2 . Inorg. Mater. 27, 140–141 (1991).

    Google Scholar 

  25. Snyder, J. Thesis, Pennsylvania State Univ. (2003).

  26. Cornelius, A. L. & Gardner, J. S. Short-range magnetic interactions in the spin-ice compound Ho2Ti2O7 . Phys. Rev. B 64, 060406 (2001).

    Article  ADS  Google Scholar 

  27. Melko, R. G., den Hertog, B. C. & Gingras, M. J. P. Long-range order at low temperatures in dipolar spin ice. Phys. Rev. Lett. 87, 067203 (2001).

    Article  ADS  Google Scholar 

  28. Siddharthan, R., Shastry, B. S. & Ramirez, A. P. Spin ordering and partial ordering in holmium titanate and related systems. Phys. Rev. B 63, 184412 (2001).

    Article  ADS  Google Scholar 

  29. Higashinaka, R. & Maeno, Y. Field-induced transition on a triangular plane in the spin-ice compound Dy2Ti2O7 . Phys. Rev. Lett. 95, 237208 (2005).

    Article  ADS  Google Scholar 

  30. Ruff, J. P. C., Melko, R. G. & Gingras, M. J. P. Finite-temperature transitions in dipolar spin ice in a large magnetic field. Phys. Rev. Lett. 95, 097202 (2005).

    Article  ADS  Google Scholar 

  31. Matsuhira, K., Hinatsu, Y. & Sakakibara, T. Novel dynamical magnetic properties in the spin ice compound Dy2Ti2O7 . J. Phys. Condens. Matter 13, L737–L746 (2001).

    Article  ADS  Google Scholar 

  32. Ramirez, A. P., Espinosa, G. P. & Cooper, A. S. Strong frustration and dilution-enhanced order in a quasi-2D spin glass. Phys. Rev. Lett. 64, 2070–2073 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Science Foundation and helpful discussions with R. Moessner and A. P. Ramirez. R.S.F. thanks the CNPq-Brazil for sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. C. Lau, P. Schiffer or R. J. Cava.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, G., Freitas, R., Ueland, B. et al. Zero-point entropy in stuffed spin-ice. Nature Phys 2, 249–253 (2006). https://doi.org/10.1038/nphys270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing