Abstract
Since the discovery of the giant magnetoresistance effect1,2 the intrinsic angular momentum of the electron has opened up new spin-based device concepts. Our present understanding of the coupled transport of charge, spin and heat relies on the two-channel model for spin-up and spin-down electrons having equal temperatures. Here we report the observation of different (effective) temperatures for the spin-up and spin-down electrons in a nanopillar spin valve subject to a heat current. By three-dimensional finite element modelling3 of our devices for varying thickness of the non-magnetic layer, spin heat accumulations (the difference of the spin temperatures) of 120 mK and 350 mK are extracted at room temperature and 77 K, respectively, which is of the order of 10% of the total temperature bias over the nanopillar. This technique uniquely allows the study of inelastic spin scattering at low energies and elevated temperatures, which is not possible by spectroscopic methods.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
Slachter, A., Bakker, F. L. & van Wees, B. J. Modeling of thermal spin transport and spin-orbit effects in ferromagnetic/nonmagnetic mesoscopic devices. Phys. Rev. B 84, 174408 (2011).
Bauer, G. E.W., MacDonald, A. H. & Maekawa, S. Spin caloritronics. Solid State Commun. 150, 459–460 (2010).
Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nature Mater. 11, 391–399 (2012).
Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).
Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).
Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).
Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).
Le Breton, J-C., Sharma, S., Saito, H., Yuasa, S. & Jansen, R. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunneling. Nature 475, 82–85 (2011).
Gravier, L., Serrano-Guisan, S., Reuse, F. & Ansermet, J-Ph. Spin-dependent Peltier effect of perpendicular currents in multilayered nanowires. Phys. Rev. B 73, 052410 (2006).
Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nature Nanotech. 7, 166–168 (2012).
Walter, M. et al. Seebeck effect in magnetic tunnel junctions. Nature Mater. 10, 742–746 (2011).
Liebing, N. et al. Tunneling magnetothermopower in magnetic tunnel junction nanopillars. Phys. Rev. Lett. 107, 177201 (2011).
Lin, W. et al. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions. Nature Commun. 3, 744 (2012).
Czerner, M., Bachmann, M. & Heiliger, C. Spin caloritronics in magnetic tunnel junctions: Ab initio studies. Phys. Rev. B 83, 132405 (2011).
Zhang, Z. H. et al. Seebeck rectification enabled by intrinsic thermoelectrical coupling in magnetic tunneling junctions. Phys. Rev. Lett. 109, 037206 (2012).
Hatami, M., Bauer, G. E. W., Zhang, Q. & Kelly, P. J. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett. 99, 066603 (2007).
Franz, R. & Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. 165, 497–531 (1853).
Heikkilä, T. T., Hatami, M. & Bauer, G. E. W. Spin heat accumulation and its relaxation in spin valves. Phys. Rev. B 81, 100408 (2010).
Sato, H., Aoki, Y., Kobayashi, Y., Yamamoto, H. & Shinjo, T. Giant magnetic field effect on thermal conductivity of magnetic multilayers, Cu/Co/Cu/Ni(Fe). J. Phys. Soc. Jpn 62, 431–434 (1993).
Sato, H., Aoki, Y., Kobayashi, Y., Yamamoto, H. & Shinjo, T. Huge magnetic field-dependent thermal conductivity in magnetic multilayer films. J. Magn. Magn. Mater. 126, 410–412 (1993).
Jeong, T., Moneck, M. T. & Zhu, J-G. Giant magneto-thermal conductivity in magnetic multilayers. IEEE Trans. Magn. 48, 3031–3034 (2012).
Kimling, J., Nielsch, K., Rott, K. & Reiss, G. Field-dependent thermal conductivity and Lorenz number in Co/Cu multilayers. Phys. Rev. B 87, 134406 (2013).
Wang, W. & Cahill, D. G. Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu. Phys. Rev. Lett. 109, 175503 (2012).
Parui, S., van der Ploeg, J. R. R., Rana, K. G. & Banerjee, T. Nanoscale hot electron transport across Cu/n-Si(100) and Cu/n-Si(111) interfaces. Phys. Status Solidi 5, 388–390 (2011).
Jedema, F. J., Filip, A. T. & Wees, B. J. van Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).
Dejene, F. K., Flipse, J. & Van Wees, B. J. Spin-dependent Seebeck coefficients of Ni80Fe20 and Co in nanopillar spin valves. Phys. Rev. B 86, 024436 (2012).
Zhu, M., Dennis, C. L. & McMichael, R. D. Temperature dependence of magnetization drift velocity and current polarization in Ni80Fe20 by spin-wave Doppler measurements. Phys. Rev. B 81, 140407 (2010).
Bass, J. & Pratt, W. P. Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201 (2007).
Acknowledgements
We would like to acknowledge B. Wolfs, M. de Roosz and J. G. Holstein for technical assistance. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM) and supported by NanoLab NL, EU FP7 ICT Grant No. 251759 MACALO, JSPS Grand-in-Aid for Scientific Research A No. 25247056, Deutsche Forschungsgemeinschaft (DFG) Priority Programme SPP 1538 ‘Spin-Caloric Transport’ and the Zernike Institute for Advanced Materials.
Author information
Authors and Affiliations
Contributions
F.K.D., J.F. and B.J.v.W. conceived the experiments. F.K.D. and J.F. designed and carried out the main experiments. All authors were involved in the analysis. F.K.D. and J.F. wrote the paper, with the help of the co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1374 kb)
Rights and permissions
About this article
Cite this article
Dejene, F., Flipse, J., Bauer, G. et al. Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves. Nature Phys 9, 636–639 (2013). https://doi.org/10.1038/nphys2743
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2743
This article is cited by
-
Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8
Nature Communications (2022)
-
Precise nanoscale temperature mapping in operational microelectronic devices by use of a phase change material
Scientific Reports (2020)
-
Evidence for spin-dependent energy transport in a superconductor
Nature Communications (2020)
-
Near-room-temperature spin caloritronics in a magnetized and defective zigzag MoS2 nanoribbon
Journal of Computational Electronics (2020)
-
Thermoelectric spin voltage in graphene
Nature Nanotechnology (2018)