Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves

Abstract

Since the discovery of the giant magnetoresistance effect1,2 the intrinsic angular momentum of the electron has opened up new spin-based device concepts. Our present understanding of the coupled transport of charge, spin and heat relies on the two-channel model for spin-up and spin-down electrons having equal temperatures. Here we report the observation of different (effective) temperatures for the spin-up and spin-down electrons in a nanopillar spin valve subject to a heat current. By three-dimensional finite element modelling3 of our devices for varying thickness of the non-magnetic layer, spin heat accumulations (the difference of the spin temperatures) of 120 mK and 350 mK are extracted at room temperature and 77 K, respectively, which is of the order of 10% of the total temperature bias over the nanopillar. This technique uniquely allows the study of inelastic spin scattering at low energies and elevated temperatures, which is not possible by spectroscopic methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SHA at an F/N interface.
Figure 2: SHA in an F/N/F spin valve.
Figure 3: Device geometry.
Figure 4: Measured spin heat and conventional spin valve effects.

Similar content being viewed by others

References

  1. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  ADS  Google Scholar 

  2. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    ADS  Google Scholar 

  3. Slachter, A., Bakker, F. L. & van Wees, B. J. Modeling of thermal spin transport and spin-orbit effects in ferromagnetic/nonmagnetic mesoscopic devices. Phys. Rev. B 84, 174408 (2011).

    Article  ADS  Google Scholar 

  4. Bauer, G. E.W., MacDonald, A. H. & Maekawa, S. Spin caloritronics. Solid State Commun. 150, 459–460 (2010).

    Article  ADS  Google Scholar 

  5. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nature Mater. 11, 391–399 (2012).

    Article  ADS  Google Scholar 

  6. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  ADS  Google Scholar 

  7. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).

    Article  ADS  Google Scholar 

  8. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    Article  ADS  Google Scholar 

  9. Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    Article  ADS  Google Scholar 

  10. Le Breton, J-C., Sharma, S., Saito, H., Yuasa, S. & Jansen, R. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunneling. Nature 475, 82–85 (2011).

    Article  ADS  Google Scholar 

  11. Gravier, L., Serrano-Guisan, S., Reuse, F. & Ansermet, J-Ph. Spin-dependent Peltier effect of perpendicular currents in multilayered nanowires. Phys. Rev. B 73, 052410 (2006).

    Article  ADS  Google Scholar 

  12. Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nature Nanotech. 7, 166–168 (2012).

    Article  ADS  Google Scholar 

  13. Walter, M. et al. Seebeck effect in magnetic tunnel junctions. Nature Mater. 10, 742–746 (2011).

    Article  ADS  Google Scholar 

  14. Liebing, N. et al. Tunneling magnetothermopower in magnetic tunnel junction nanopillars. Phys. Rev. Lett. 107, 177201 (2011).

    Article  ADS  Google Scholar 

  15. Lin, W. et al. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions. Nature Commun. 3, 744 (2012).

    Article  ADS  Google Scholar 

  16. Czerner, M., Bachmann, M. & Heiliger, C. Spin caloritronics in magnetic tunnel junctions: Ab initio studies. Phys. Rev. B 83, 132405 (2011).

    Article  ADS  Google Scholar 

  17. Zhang, Z. H. et al. Seebeck rectification enabled by intrinsic thermoelectrical coupling in magnetic tunneling junctions. Phys. Rev. Lett. 109, 037206 (2012).

    Article  ADS  Google Scholar 

  18. Hatami, M., Bauer, G. E. W., Zhang, Q. & Kelly, P. J. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett. 99, 066603 (2007).

    Article  ADS  Google Scholar 

  19. Franz, R. & Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. 165, 497–531 (1853).

    Article  Google Scholar 

  20. Heikkilä, T. T., Hatami, M. & Bauer, G. E. W. Spin heat accumulation and its relaxation in spin valves. Phys. Rev. B 81, 100408 (2010).

    Article  ADS  Google Scholar 

  21. Sato, H., Aoki, Y., Kobayashi, Y., Yamamoto, H. & Shinjo, T. Giant magnetic field effect on thermal conductivity of magnetic multilayers, Cu/Co/Cu/Ni(Fe). J. Phys. Soc. Jpn 62, 431–434 (1993).

    Article  ADS  Google Scholar 

  22. Sato, H., Aoki, Y., Kobayashi, Y., Yamamoto, H. & Shinjo, T. Huge magnetic field-dependent thermal conductivity in magnetic multilayer films. J. Magn. Magn. Mater. 126, 410–412 (1993).

    Article  ADS  Google Scholar 

  23. Jeong, T., Moneck, M. T. & Zhu, J-G. Giant magneto-thermal conductivity in magnetic multilayers. IEEE Trans. Magn. 48, 3031–3034 (2012).

    Article  ADS  Google Scholar 

  24. Kimling, J., Nielsch, K., Rott, K. & Reiss, G. Field-dependent thermal conductivity and Lorenz number in Co/Cu multilayers. Phys. Rev. B 87, 134406 (2013).

    Article  ADS  Google Scholar 

  25. Wang, W. & Cahill, D. G. Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu. Phys. Rev. Lett. 109, 175503 (2012).

    Article  ADS  Google Scholar 

  26. Parui, S., van der Ploeg, J. R. R., Rana, K. G. & Banerjee, T. Nanoscale hot electron transport across Cu/n-Si(100) and Cu/n-Si(111) interfaces. Phys. Status Solidi 5, 388–390 (2011).

    Google Scholar 

  27. Jedema, F. J., Filip, A. T. & Wees, B. J. van Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    Article  ADS  Google Scholar 

  28. Dejene, F. K., Flipse, J. & Van Wees, B. J. Spin-dependent Seebeck coefficients of Ni80Fe20 and Co in nanopillar spin valves. Phys. Rev. B 86, 024436 (2012).

    Article  ADS  Google Scholar 

  29. Zhu, M., Dennis, C. L. & McMichael, R. D. Temperature dependence of magnetization drift velocity and current polarization in Ni80Fe20 by spin-wave Doppler measurements. Phys. Rev. B 81, 140407 (2010).

    Article  ADS  Google Scholar 

  30. Bass, J. & Pratt, W. P. Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge B. Wolfs, M. de Roosz and J. G. Holstein for technical assistance. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM) and supported by NanoLab NL, EU FP7 ICT Grant No. 251759 MACALO, JSPS Grand-in-Aid for Scientific Research A No. 25247056, Deutsche Forschungsgemeinschaft (DFG) Priority Programme SPP 1538 ‘Spin-Caloric Transport’ and the Zernike Institute for Advanced Materials.

Author information

Authors and Affiliations

Authors

Contributions

F.K.D., J.F. and B.J.v.W. conceived the experiments. F.K.D. and J.F. designed and carried out the main experiments. All authors were involved in the analysis. F.K.D. and J.F. wrote the paper, with the help of the co-authors.

Corresponding author

Correspondence to F. K. Dejene.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dejene, F., Flipse, J., Bauer, G. et al. Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves. Nature Phys 9, 636–639 (2013). https://doi.org/10.1038/nphys2743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing