Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice

Abstract

One of the intriguing properties of quantum many-body systems is the emergence of long-range order from particles with short-range interactions. For example, magnetism involves the long-range ordering of electron spins. Systems of ultracold atoms are rapidly emerging as precise and controllable simulators of magnetism and other phenomena. Spinor condensates1,2 are a powerful tool in this regard; however, the spin interaction is typically weak and accessible only when multiple atomic internal states are collisionally stable. Here we demonstrate a lattice-shaking technique for hybridizing Bloch bands in optical lattices to introduce a strong effective spin interaction and the formation of large ferromagnetic domains. Our band hybridization method is independent of the atomic internal state, and can be widely applied to quantum simulators to explore new magnetic phases in optical lattices with tunable band structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferromagnetic transition in a shaken optical lattice with double-well dispersion.
Figure 2: Sensitivity of the ferromagnetic transition to explicit energy imbalance.
Figure 3: Domain reconstruction.
Figure 4: Ferromagnetic domains and spin correlations.

Similar content being viewed by others

References

  1. Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998).

    Article  ADS  Google Scholar 

  2. Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).

    Article  ADS  Google Scholar 

  3. Schmaljohann, H. et al. Dynamics of F = 2 spinor Bose–Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004).

    Article  ADS  Google Scholar 

  4. Chang, M-S., Qin, Q., Zhang, W., You, L. & Chapman, M. S. Coherent spinor dynamics in a spin-1 Bose condensate. Nature Phys. 1, 111–116 (2005).

    Article  ADS  Google Scholar 

  5. Stamper-Kurn, D. M. & Ueda, M. Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013).

    Article  ADS  Google Scholar 

  6. Vengalattore, M., Leslie, S. R., Guzman, J. & Stamper-Kurn, D. M. Spontaneously modulated spin textures in a dipolar spinor Bose–Einstein condensate. Phys. Rev. Lett. 100, 170403 (2008).

    Article  ADS  Google Scholar 

  7. Kronjäger, J., Becker, C., Soltan-Panahi, P., Bongs, K. & Sengstock, K. Spontaneous pattern formation in an antiferromagnetic quantum gas. Phys. Rev. Lett. 105, 090402 (2010).

    Article  ADS  Google Scholar 

  8. Vinit, A., Bookjans, E. M., de Melo, C. A. R. S. & Raman, C. Antiferromagnetic spatial ordering in a quenched one-dimensional spinor gas. Phys. Rev. Lett. 110, 165301 (2013).

    Article  ADS  Google Scholar 

  9. Ho, T-L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998).

    Article  ADS  Google Scholar 

  10. Ohmi, T. & Machida, K. Bose–Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn 67, 1822–1825 (1998).

    Article  ADS  Google Scholar 

  11. Guzman, J. et al. Long-time-scale dynamics of spin textures in a degenerate F = 187Rb spinor Bose gas. Phys. Rev. A 84, 063625 (2011).

    Article  ADS  Google Scholar 

  12. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article  ADS  Google Scholar 

  13. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    Article  ADS  Google Scholar 

  14. Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011).

    Article  ADS  Google Scholar 

  15. Jo, G-B. et al. Ultracold atoms in a tunable optical kagome lattice. Phys. Rev. Lett. 108, 045305 (2012).

    Article  ADS  Google Scholar 

  16. Wirth, G., Ölschläger, M. & Hemmerich, A. Evidence for orbital superfluidity in the p-band of a bipartite optical square lattice. Nature Phys. 7, 147–153 (2011).

    Article  ADS  Google Scholar 

  17. Gemelke, N., Sarajlic, E., Bidel, Y., Hong, S. & Chu, S. Parametric amplification of matter waves in periodically translated optical lattices. Phys. Rev. Lett. 95, 170404 (2005).

    Article  ADS  Google Scholar 

  18. Lignier, H. et al. Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett. 99, 220403 (2007).

    Article  ADS  Google Scholar 

  19. Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996 (2011).

    Article  ADS  Google Scholar 

  20. Struck, J. et al. Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett. 108, 225304 (2012).

    Article  ADS  Google Scholar 

  21. Struck, J. et al. Engineering Ising-xy spin-models in a triangular lattice using tunable artificial gauge fields. Nature Phys. http://dx.doi.org/10.1038/nphys2750 (2013).

  22. Lin, Y-J., Jiménez-Garcı´a, K. & Spielman, I. B. Spin-orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

    Article  ADS  Google Scholar 

  23. Wang, C., Gao, C., Jian, C-M. & Zhai, H. Spin-orbit coupled spinor Bose–Einstein condensates. Phys. Rev. Lett. 105, 160403 (2010).

    Article  ADS  Google Scholar 

  24. Ho, T-L. & Zhang, S. Bose–Einstein condensates with spin-orbit interaction. Phys. Rev. Lett. 107, 150403 (2011).

    Article  ADS  Google Scholar 

  25. Dalton, B. J. & Ghanbari, S. Two mode theory of Bose–Einstein condensates: interferometry and the Josephson model. J. Mod. Opt. 59, 287–353 (2011).

    Article  ADS  Google Scholar 

  26. Zhang, X., Hung, C-L., Tung, S-K. & Chin, C. Observation of quantum criticality with ultracold atoms in optical lattices. Science 335, 1070–1072 (2012).

    Article  ADS  Google Scholar 

  27. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article  ADS  Google Scholar 

  28. Shankar, R. Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129–192 (1994).

    Article  ADS  Google Scholar 

  29. Hung, C-L., Zhang, X., Gemelke, N. & Chin, C. Accelerating evaporative cooling of atoms into Bose–Einstein condensation in optical traps. Phys. Rev. A 78, 011604 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C-K. Lin for assistance in the early stages of the experiment. We acknowledge useful discussions with N. Gemelke, I. Spielman, A. Rançon, H. Zhai and G. Baym. This work was supported by NSF MRSEC (DMR-0820054), NSF Grant No. PHY-0747907 and ARO Grant No. W911NF0710576 with funds from the DARPA OLE Program.

Author information

Authors and Affiliations

Authors

Contributions

L-C.H. performed the experiments. L-C.H. and C.V.P. analysed the data and C.V.P. wrote the manuscript. C.C. supervised.

Corresponding author

Correspondence to Cheng Chin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 580 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, C., Ha, LC. & Chin, C. Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice. Nature Phys 9, 769–774 (2013). https://doi.org/10.1038/nphys2789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing