Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The superfluid glass phase of 3He-A

Abstract

It is established theoretically that an ordered state with continuous symmetry is inherently unstable to arbitrarily small amounts of disorder1,2. This principle is of central importance in a wide variety of condensed systems including superconducting vortices3,4, Ising spin models5 and their dynamics6, and liquid crystals in porous media7,8, where some degree of disorder is ubiquitous, although its experimental observation has been elusive. On the basis of these ideas, it was predicted9 that 3He in high-porosity aerogel would become a superfluid glass. We report here our nuclear magnetic resonance measurements on 3He in aerogel demonstrating destruction of long-range orientational order of the intrinsic superfluid orbital angular momentum, confirming the existence of a superfluid glass. In contrast, 3He-A generated by warming from superfluid 3He-B has perfect long-range orientational order providing a mechanism for switching offthis effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superfluid 3He in aerogel.
Figure 2: Identification of the superfluid state.
Figure 3: Superfluid phase diagrams.
Figure 4: Identification of the glass phase.
Figure 5: Comparing the glass phase with macroscopic inhomogeneity.

Similar content being viewed by others

References

  1. Larkin, A. I. Effect of inhomogeneities on the structure of the mixed state of superconductors. JETP Lett. 31, 784–786 (1970).

    Google Scholar 

  2. Imry, Y. & Ma, S. Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35, 1399–1401 (1975).

    Article  ADS  Google Scholar 

  3. Gingras, M. J. P. & Huse, D. A. Topological defects in the random-field XY model and the pinned vortex lattice to vortex glass transition in type-II superconductors. Phys. Rev. B 53, 15193–15200 (1996).

    Article  ADS  Google Scholar 

  4. Emig, T., Bogner, S. & Nattermann, T. Nonuniversal quasi-long-range order in the glassy phase of impure superconductors. Phys. Rev. Lett. 83, 400–403 (1999).

    Article  ADS  Google Scholar 

  5. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    Article  ADS  Google Scholar 

  6. Fisher, D. S., Doussal, P. L. & Monthus, P. Nonequilibrium dynamics of random field Ising spin chains: Exact results via real space renormalization group. Phys. Rev. E 64, 066107 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  7. Radzihovsky, L. & Toner, J. Smectic liquid crystals in random environments. Phys. Rev. B 60, 206–257 (1999).

    Article  ADS  Google Scholar 

  8. Bellini, T. et al. Nematics with quenched disorder: What is left when long range order is disrupted? Phys. Rev. Lett. 85, 1008–1011 (2000).

    Article  ADS  Google Scholar 

  9. Volovik, G. E. Glass state of superfluid 3He-A in an aerogel. JETP Lett. 63, 301–304 (1996).

    Article  ADS  Google Scholar 

  10. Norman, M. R. Unconventional superconductivity. http://arxiv.org/abs/1302.3176 (2013).

  11. Mydosh, J. A. & Oppeneer, P. M. Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2 . Rev. Mod. Phys. 83, 1301–1322 (2011).

    Article  ADS  Google Scholar 

  12. Leggett, A. J. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331–414 (1975).

    Article  ADS  Google Scholar 

  13. Sprague, D. T. et al. Homogeneous equal-spin pairing superfluid state of 3He in aerogel. Phys. Rev. Lett. 75, 661–664 (1995).

    Article  ADS  Google Scholar 

  14. Barker, B. I., Lee, Y., Polukhina, L. & Osheroff, D. D. Observation of a superfluid 3He A-B phase transition in silica aerogel. Phys. Rev. Lett. 85, 2148–2151 (2000).

    Article  ADS  Google Scholar 

  15. Baumgardner, J. E. & Osheroff, D. D. Phase diagram of superfluid 3He in 99.3% porosity aerogel. Phys. Rev. Lett. 93, 155301 (2004).

    Article  ADS  Google Scholar 

  16. Nakagawa, H. et al. Equal-spin-pairing superfluid phase of 3He in an aerogel acting as an impurity. Phys. Rev. B 76, 172504 (2007).

    Article  ADS  Google Scholar 

  17. Kunimatsu, T. et al. Orientation effect on superfluid 3He in anisotropic aerogel. JETP Lett. 86, 216–220 (2007).

    Article  ADS  Google Scholar 

  18. Elbs, J., Bunkov, Y. M., Collin, E. & Godfrin, H. Strong orientational effect of stretched aerogel on the 3He order parameter. Phys. Rev. Lett. 100, 215304 (2008).

    Article  ADS  Google Scholar 

  19. Dmitriev, V. V. et al. Orbital glass and spin glass states of 3He-A in aerogel. JETP Lett. 91, 599–606 (2010).

    Article  ADS  Google Scholar 

  20. Pollanen, J. et al. Globally anisotropic high porosity silica aerogels. J. Non-Cryst. Solids 354, 4668–4674 (2008).

    Article  ADS  Google Scholar 

  21. Pollanen, J., Li, J. I. A., Collett, C. A., Gannon, W. J. & Halperin, W. P. Identification of superfluid phases of 3He in uniformly isotropic 98.2% aerogel. Phys. Rev. Lett. 107, 195301 (2011).

    Article  ADS  Google Scholar 

  22. Brinkman, W. F. & Smith, H. Frequency shifts in pulsed NMR for 3He(A). Phys. Lett. 51, 449–450 (1975).

    Article  Google Scholar 

  23. Thuneberg, E. V., Yip, S. K., Fogelström, M. & Sauls, J. A. Models for superfluid 3He in aerogel. Phys. Rev. Lett. 80, 2861–2864 (1998).

    Article  ADS  Google Scholar 

  24. Halperin, W. P., Choi, H., Davis, J. P. & Pollanen, J. Impurity effects of aerogel in superfluid 3He. J. Phys. Soc. Jpn 77, 111002 (2008).

    Article  ADS  Google Scholar 

  25. Volovik, G. E. On Larkin–Imry–Ma state of 3He-A in aerogel. J. Low Temp. Phys. 150, 453–463 (2008).

    Article  ADS  Google Scholar 

  26. Bradley, D. I. et al. Relic topological defects from brane annihilation simulated in superfluid 3He. Nature Phys. 4, 46–49 (2008).

    Article  ADS  Google Scholar 

  27. Bennett, R. G. et al. Modification of the 3He phase diagram by anisotropic disorder. Phys. Rev. Lett. 107, 235504 (2011).

    Article  ADS  Google Scholar 

  28. Vollhardt, D. & Wölfle, P. The Superfluid Phases of Helium 3 (Taylor and Francis, 1990).

    Book  Google Scholar 

  29. Pollanen, J. et al. New chiral phases of superfluid 3He stabilized by anisotropic silica aerogel. Nature Phys. 8, 317–320 (2012).

    Article  ADS  Google Scholar 

  30. Bradley, D. I. et al. Magnetic phase transition in a nanonetwork of solid 3He in aerogel. Phys. Rev. Lett. 105, 125303 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to V. V. Dmitriev, M. R. Eskildsen, M. J. P. Gingras, R. Ikeda, J. A. Sauls, J. Saunders, D. Vollhardt and G. E. Volovik for helpful comments and for support from the National Science Foundation, DMR-1103625.

Author information

Authors and Affiliations

Authors

Contributions

The experiment is designed by J.I.A.L., J.P. and W.P.H. Experimental work and analysis was principally carried out by J.I.A.L. assisted by J.P. and A.M.Z. with further support from C.A.C. and W.J.G. Advice and assistance were provided by W.P.H.

Corresponding author

Correspondence to W. P. Halperin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Pollanen, J., Zimmerman, A. et al. The superfluid glass phase of 3He-A. Nature Phys 9, 775–779 (2013). https://doi.org/10.1038/nphys2806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing