Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sensing and atomic-scale structure analysis of single nuclear-spin clusters in diamond

Abstract

Single-molecule nuclear magnetic resonance is a current challenge in the field of magnetic resonance spectroscopy and has important applications in chemical analysis and quantum computing. Through decoherence measurements of nitrogen–vacancy centres under dynamical decoupling control, the sensing of a single 13C nuclear spin at nanometre distance has recently been realized1,2,3. A further step towards the ultimate goal of structure analysis of single molecules would be the direct measurement of the interactions within single nuclear-spin clusters4. Here we sense a single 13C–13C nuclear-spin dimer located about 1 nm from the nitrogen–vacancy centre and characterize the interaction (690 Hz) between the two nuclear spins. From the measured interaction we derive the spatial configuration of the dimer with atomic-scale resolution. These results indicate that, in combination with advanced material-surface engineering, central spin decoherence under dynamical decoupling control may be a useful probe for nuclear magnetic resonance single-molecule structure analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the set-up and experimental method.
Figure 2: Dip features in the nitrogen–vacancy centre spin decoherence under CPMG control with various numbers of pulses.
Figure 3: Characterizing the interaction of a nuclear-spin dimer by fingerprint-matching between measurement and simulation.
Figure 4: Magnetic field dependence of the dip features in the nitrogen–vacancy centre spin decoherence for different transitions.

Similar content being viewed by others

References

  1. Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

    Article  ADS  Google Scholar 

  2. Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article  ADS  Google Scholar 

  3. Zhao, N. et al. Sensing single remote nuclear spins. Nature Nanotech. 7, 657–662 (2012).

    Article  ADS  Google Scholar 

  4. Zhao, N., Hu, J. L., Ho, S. W., Wan, J. T. K. & Liu, R. B. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nature Nanotech. 6, 242–246 (2011).

    Article  ADS  Google Scholar 

  5. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    Article  ADS  Google Scholar 

  6. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  7. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  ADS  Google Scholar 

  8. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  ADS  Google Scholar 

  9. Ryan, C. A., Hodges, J. S. & Cory, D. G. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010).

    Article  ADS  Google Scholar 

  10. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometre) 3 sample volume. Science 339, 561–563 (2013).

    Article  ADS  Google Scholar 

  11. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  ADS  Google Scholar 

  12. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    Article  ADS  Google Scholar 

  13. Loretz, M. et al. Radio-frequency magnetometry using a single electron spin. Phys. Rev. Lett. 110, 017602 (2013).

    Article  ADS  Google Scholar 

  14. Huang, P. et al. Observation of an anomalous decoherence effect in a quantum bath at room temperature. Nature Commun. 2, 570 (2011).

    Article  ADS  Google Scholar 

  15. Zhao, N., Wang, Z. & Liu, R. B. Anomalous decoherence effect in a quantum bath. Phys. Rev. Lett. 106, 217205 (2011).

    Article  ADS  Google Scholar 

  16. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  17. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    Article  ADS  Google Scholar 

  18. Fuchs, G. D. et al. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  ADS  Google Scholar 

  19. Cappellaro, P., Jiang, L., Hodges, J. S. & Lukin, M. D. Coherence and control of quantum registers based on electronic spin in a nuclear spin bath. Phys. Rev. Lett. 102, 210502 (2009).

    Article  ADS  Google Scholar 

  20. Neumann, P. et al. Quantum register based on coupled electron spins in a room-temperature solid. Nature Phys. 6, 249–253 (2010).

    Article  ADS  Google Scholar 

  21. Shi, F. Z. et al. Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. Phys. Rev. Lett. 105, 040504 (2010).

    Article  ADS  Google Scholar 

  22. Xu, X. K. et al. Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109, 070502 (2012).

    Article  ADS  Google Scholar 

  23. Sar, T. V. D. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).

    Article  ADS  Google Scholar 

  24. Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013).

    Article  ADS  Google Scholar 

  25. Zhao, N., Ho, S. W. & Liu, R. B. Decoherence and dynamical decoupling control of nitrogen vacancy centre electron spins in nuclear spin baths. Phys. Rev. B 85, 115303 (2012).

    Article  ADS  Google Scholar 

  26. Du, J. F. et al. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature 461, 1265–1268 (2009).

    Article  ADS  Google Scholar 

  27. de Lange, G., Wang, Z. H., Riste, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  ADS  Google Scholar 

  28. Kotler, S., Akerman, N., Glickman, Y., Keselman, A. & Ozeri, R. Single-ion quantum lock-in amplifier. Nature 473, 61–65 (2011).

    Article  ADS  Google Scholar 

  29. Lange, G. de., Riste, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

    Article  Google Scholar 

  30. Ofori-Okai, B. K. et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406(R) (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Program of China (Grant No. 2013CB921800), the National Natural Science Foundation of China (Grant Nos. 11227901,91021005,10834005,11028510), the ‘Strategic Priority Research Program (B)’ of the CAS (Grant No. XDB01030400), the Fundamental Research Funds for the Central Universities, Hong Kong Research Grants Council (N_CUHK403/11, 402410 & HKU8/CRF/11G), the Chinese University of Hong Kong Focused Investments Scheme and the 1000 Plan Program for Young Talents. The authors thank A. Crosse for help to improve the readability of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.D. and R-B.L. proposed the idea. J.D. and F.S. designed the experimental proposal. P.W., X.K. and F.S. prepared the experimental set-up. F.S., F.K. and X.K. performed the experiments. J.D. supervised the set-up and experiments. N.Z. and F.S. carried out the calculation. F.S., N.Z., R-B.L. and J.D. wrote the paper. All authors analysed the data, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jiangfeng Du.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 896 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, F., Kong, X., Wang, P. et al. Sensing and atomic-scale structure analysis of single nuclear-spin clusters in diamond. Nature Phys 10, 21–25 (2014). https://doi.org/10.1038/nphys2814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing