Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Switching of magnetic domains reveals spatially inhomogeneous superconductivity

Abstract

The interplay of magnetic and charge fluctuations can lead to quantum phases with exceptional electronic properties. A case in point is magnetically-driven superconductivity1,2, where magnetic correlations fundamentally affect the underlying symmetry and generate new physical properties. The superconducting wavefunction in most known magnetic superconductors does not break translational symmetry. However, it has been predicted that modulated triplet p-wave superconductivity occurs in singlet d-wave superconductors with spin-density-wave (SDW) order3,4. Here we report evidence for the presence of a spatially inhomogeneous p-wave Cooper pair-density wave in CeCoIn5. We show that the SDW domains can be switched completely by a tiny change of the magnetic field direction, which is naturally explained by the presence of triplet superconductivity. Further, the Q-phase emerges in a common magneto-superconducting quantum critical point. The Q-phase of CeCoIn5 thus represents an example where spatially modulated superconductivity is associated with SDW order.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A novel magneto-superconducting quantum critical point.
Figure 2: Imbalance of the Q-phase domain population.
Figure 3: Switching of magneto-superconducting domains.
Figure 4: A Cooper PDW in the Q-phase.

Similar content being viewed by others

References

  1. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  Google Scholar 

  2. Monthoux, P., Pines, D. & Lonzarich, G. G. Superconductivity without phonons. Nature 450, 1177–1183 (2007).

    Article  ADS  Google Scholar 

  3. Aperis, A., Varelogiannis, G. & Littlewood, P. B. Magnetic-field-induced pattern of coexisting condensates in the superconducting state of CeCoIn5 . Phys. Rev. Lett. 104, 216403 (2010).

    Article  ADS  Google Scholar 

  4. Agterberg, D. F., Sigrist, M. & Tsunetsugu, H. Order parameter and vortices in the superconducting Q phase of CeCoIn5 . Phys. Rev. Lett. 102, 207004 (2009).

    Article  ADS  Google Scholar 

  5. Norman, M. R. The challenge of unconventional superconductivity. Science 332, 196–200 (2011).

    Article  ADS  Google Scholar 

  6. Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).

    ADS  Google Scholar 

  7. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    ADS  Google Scholar 

  8. Petrovic, C. et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13, L337–L342 (2001).

    Article  Google Scholar 

  9. Thompson, J. D. & Fisk, Z. Progress in heavy-fermion superconductivity: Ce115 and related materials. J. Phys. Soc. Jpn 81, 011002 (2012).

    Article  ADS  Google Scholar 

  10. Movshovich, R. et al. Unconventional superconductivity in CeIrIn5 and CeCoIn5: Specific heat and thermal conductivity studies. Phys. Rev. Lett. 86, 5152–5155 (2001).

    Article  ADS  Google Scholar 

  11. Izawa, K. et al. Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5 . Phys. Rev. Lett. 87, 057002 (2001).

    Article  ADS  Google Scholar 

  12. Curro, N. J. et al. Anomalous NMR magnetic shifts in CeCoIn5 . Phys. Rev. B 64, 180514(R) (2001).

    Article  ADS  Google Scholar 

  13. Settai, R. et al. Quasi-two-dimensional Fermi surfaces and the de Haas-van Alphen oscillation in both the normal and the superconducting mixed states of CeCoIn5 . J. Phys. Condens. Matter 13, L627–L634 (2001).

    Article  ADS  Google Scholar 

  14. Stock, C., Brohom, C., Hudis, J., Kang, H. J. & Petrovic, C. Spin resonance in the d-wave superconductor CeCoIn5 . Phys. Rev. Lett. 100, 087001 (2008).

    Article  ADS  Google Scholar 

  15. Bianchi, A., Movshovich, R., Capan, C., Pagliuso, P. G. & Sarrao, J. L. Possible Fulde–Ferrell–Larkin–Ovchinnikov state in CeCoIn5 . Phys. Rev. Lett. 91, 187004 (2003).

    Article  ADS  Google Scholar 

  16. Kenzelmann, M. et al. Coupled superconducting and magnetic order in CeCoIn5 . Science 312, 1652–1654 (2008).

    Article  ADS  Google Scholar 

  17. Kenzelmann, M. et al. Evidence for a magnetically driven superconducting Q phase of CeCoIn5 . Phys. Rev. Lett. 104, 127001 (2010).

    Article  ADS  Google Scholar 

  18. Young, B.-L. et al. Microscopic evidence for field-induced magnetism in CeCoIn5 . Phys. Rev. Lett. 98, 036402 (2007).

    Article  ADS  Google Scholar 

  19. Yanase, Y. & Sigrist, M. Ginzburg–Landau analysis for the antiferromagnetic order in the Fulde–Ferrell–Larkin–Ovchinnikov superconductor. J. Phys. Soc. Jpn 80, 094702 (2011).

    Article  ADS  Google Scholar 

  20. Suzuki, K. M., Ichioka, M. & Machida, K. Theory of an inherent spin-density-wave instability due to vortices in superconductors with strong Pauli effects. Phys. Rev. B 83, 140503(R) (2011).

    Article  ADS  Google Scholar 

  21. Kato, Y., Batista, C. D. & Vekhter, I. Antiferromagnetic order in Pauli-limited unconventional superconductors. Phys. Rev. Lett. 107, 096401 (2011).

    Article  ADS  Google Scholar 

  22. Koutroulakis, G. et al. Field evolution of coexisting superconducting and magnetic orders in CeCoIn5 . Phys. Rev. Lett. 104, 087001 (2010).

    Article  ADS  Google Scholar 

  23. Leggett, A. J. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331–414 (1975).

    ADS  Google Scholar 

  24. Kumagai, K., Shishido, H., Shibauchi, T. & Matsuda, Y. Evolution of paramagnetic quasiparticle excitations emerged in the high-field superconducting phase of CeCoIn5 . Phys. Rev. Lett. 106, 137004 (2011).

    Article  ADS  Google Scholar 

  25. Mitrović, V. F. et al. Observation of spin susceptibility enhancement in the possible Fulde–Ferrell–Larkin–Ovchinnikov state of CeCoIn5 . Phys. Rev. Lett. 97, 117002 (2006).

    Article  ADS  Google Scholar 

  26. Tokiwa, Y., Bauer, E. D. & Gegenwart, P. Quasiparticle entropy in the high-field superconducting phase of CeCoIn5 . Phys. Rev. Lett. 109, 116402 (2012).

    Article  ADS  Google Scholar 

  27. Ronning, F. et al. Field-tuned quantum critical point in CeCoIn5 near the superconducting upper critical field. Phys. Rev. B 71, 104528 (2005).

    Article  ADS  Google Scholar 

  28. Bianchi, A., Movshovich, R., Vekther, I., Pagliuso, P. G. & Sarrao, J. L. Avoided antiferromagnetic order and quantum critical point in CeCoIn5 . Phys. Rev. Lett. 91, 257001 (2003).

    Article  ADS  Google Scholar 

  29. Paglione, J. et al. Field-Induced quantum critical point in CeCoIn5 . Phys. Rev. Lett. 91, 246405 (2003).

    Article  ADS  Google Scholar 

  30. Tanatar, M. A., Paglione, J., Petrovic, C. & Taillefer, L. Anisotropic violation of the Wiedemann–Franz law at a quantum critical point. Science 316, 1320–1322 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is based on neutron scattering experiments performed at the Institut Laue-Langevin, Grenoble, France and the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. We thank P. Fouilloux and M. Zolliker for technical assistance. Discussions with M. Sigrist as well as C. Batista, P. Coleman, K. Machida, K. Kumagai and J. S. White are acknowledged. This work was supported by the Swiss NSF (Contract No. 200021-122054, 200020-140345 and MaNEP). A.D.B. received support from NSERC, FQRNT and the Canada Research Chair Foundation. Work at LANL was performed under the auspices of the US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

S.G. and M.K. conceived and led the project. S.G., M.B., J.L.G., E.R., N.E., C.N. and M.K. carried out the experiments. M.B. incorporated the piezoelectric sample rotator into the set-up. E.D.B and J.D.T. grew and characterized the CeCoIn5 single-crystal. S.G. analysed the data. S.G., J.L.G. and M.K. wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to Michel Kenzelmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 538 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerber, S., Bartkowiak, M., Gavilano, J. et al. Switching of magnetic domains reveals spatially inhomogeneous superconductivity. Nature Phys 10, 126–129 (2014). https://doi.org/10.1038/nphys2833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing