Abstract
Dynamic restructuring and ordering are prevalent in driven many-body systems with long-range interactions, such as sedimenting particles1,2,3, dusty plasmas4, flocking animals5,6,7 and microfluidic droplets8. Yet, understanding such collective dynamics from basic principles is challenging because these systems are not governed by global minimization principles, and because every constituent interacts with many others. Here, we report long-range orientational order of droplet velocities in disordered two-dimensional microfluidic droplet ensembles. Droplet velocities exhibit strong long-range correlation as 1/r2, with a four-fold angular symmetry. The two-droplet correlation can be explained by representing the entire ensemble as a third droplet. The correlation amplitude is non-monotonous with density owing to excluded-volume effects. Our study puts forth a many-body problem with long-range interactions that is solvable from first principles owing to the reduced dimensionality, and introduces new experimental tools to address open problems in many-body non-equilibrium systems9,10.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Segrè, P. N., Herbolzheimer, E. & Chaikin, P. M. Long-range correlations in sedimentation. Phys. Rev. Lett. 79, 2574–2577 (1997).
Segrè, P. N., Liu, F., Umbanhowar, P. & Weitz, D. A. An effective gravitational temperature for sedimentation. Nature 409, 594–597 (2001).
Mucha, P. J., Tee, S-Y., Weitz, D. A., Shraiman, B. I. & Brenner, M. P. A model for velocity fluctuations in sedimentation. J. Fluid Mech. 501, 71–104 (2004).
Morfill, G. E. & Ivlev, A. V. Complex plasmas: An interdisciplinary research field. Rev. Mod. Phys. 81, 1353–1404 (2009).
Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).
Zhang, H. & Be’er, A. Collective motion and density fluctuations in bacterial colonies. Proc. Natl Acad. Sci. USA 107, 13626–13630 (2010).
Cavagna, A. et al. Scale-free correlations in starling flocks. Proc. Natl Acad. Sci. USA 107, 11865–11870 (2010).
Beatus, T., Tlusty, T. & Bar-Ziv, R. Phonons in a one-dimensional microfluidic crystal. Nature Phys. 2, 743–748 (2006).
Campa, A., Dauxois, T. & Ruffo, S. Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009).
Bouchet, F. & Barré, J. Statistical mechanics of systems with long range interactions. J. Phys. Conf. Ser. 31, 18–26 (2006).
Cui, B., Diamant, H., Lin, B. & Rice, S. Anomalous hydrodynamic interaction in a quasi-two-dimensional suspension. Phys. Rev. Lett. 92, 258301 (2004).
Rouyer, F., Lhuillier, D., Martin, J. & Salin, D. Structure, density, and velocity fluctuations in quasi-two-dimensional non-Brownian suspensions of spheres. Phys. Fluids 12, 958–963 (2000).
Long, D., Stone, H. A. & Ajdari, A. Electroosmotic flows created by surface defects in capillary electrophoresis. J. Colloid Interface Sci. 212, 338–349 (1999).
Suzuki, Y. Y. & Izuyama, T. Diffusion of molecules in biomembranes. J. Phys. Soc. Jpn 58, 1104–1119 (1989).
Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001).
Beatus, T., Bar-Ziv, R. H. & Tlusty, T. The physics of 2D microfluidic droplet ensembles. Phys. Rep. 516, 103–145 (2012).
Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of continuous media. Course Theor. Phys. 8, 45–47 (1984).
Beatus, T., Bar-Ziv, R. & Tlusty, T. Anomalous microfluidic phonons induced by the interplay of hydrodynamic screening and incompressibility. Phys. Rev. Lett. 99, 124502 (2007).
Baron, M., Bławzdziewicz, J. & Wajnryb, E. Hydrodynamic crystals: Collective dynamics of regular arrays of spherical particles in a parallel-wall channel. Phys. Rev. Lett. 100, 174502 (2008).
Beatus, T., Tlusty, T. & Bar-Ziv, R. Burgers shock waves and sound in a 2D microfluidic droplets ensemble. Phys. Rev. Lett. 103, 114502 (2009).
Champagne, N., Vasseur, R., Montourcy, A. & Bartolo, D. Traffic jams and intermittent flows in microfluidic networks. Phys. Rev. Lett. 105, 044502 (2010).
Champagne, N., Lauga, E. & Bartolo, D. Stability and non-linear response of 1D microfluidic-particle streams. Soft Matter 7, 11082–11085 (2011).
Uspal, W. E. & Doyle, P. S. Scattering and nonlinear bound states of hydrodynamically coupled particles in a narrow channel. Phys. Rev. E 85, 016325 (2012).
Desreumaux, N., Caussin, J-B., Jeanneret, R., Lauga, E. & Bartolo, D. Hydrodynamic fluctuations in confined particle-laden fluids. Phys. Rev. Lett. 111, 118301 (2013).
Uspal, W. E., Burak Eral, H. & Doyle, P. S. Engineering particle trajectories in microfluidic flows using particle shape. Nature Commun. 4, 2666 (2013).
Snabre, P., Pouligny, B., Metayer, C. & Nadal, F. Size segregation and particle velocity fluctuations in settling concentrated suspensions. Rheol. Acta 48, 855–870 (2009).
Brotto, T., Caussin, J-B., Lauga, E. & Bartolo, D. Hydrodynamics of confined active fluids. Phys. Rev. Lett. 110, 038101 (2013).
Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–40 (2013).
Theberge, A. B. et al. Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. Engl. 49, 5846–68 (2010).
Joensson, H. N. & Andersson Svahn, H. Droplet microfluidics—a tool for single-cell analysis. Angew. Chem. Int. Ed. Engl. 51, 12176–92 (2012).
Acknowledgements
This work was supported by a Yeda-Sela Grant (R.H.B-Z). T.B. was supported by the Cross Disciplinary Postdoctoral Fellowship of the Human Frontier Science Program. T.T. is the Helen and Martin Chooljian Founders Circle Member in the Simons Center for Systems Biology of the Institute for Advanced Study, Princeton.
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of this work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 789 kb)
Rights and permissions
About this article
Cite this article
Shani, I., Beatus, T., Bar-Ziv, R. et al. Long-range orientational order in two-dimensional microfluidic dipoles. Nature Phys 10, 140–144 (2014). https://doi.org/10.1038/nphys2843
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2843
This article is cited by
-
Direction-dependent dynamics of colloidal particle pairs and the Stokes-Einstein relation in quasi-two-dimensional fluids
Nature Communications (2023)
-
Quasiparticles, flat bands and the melting of hydrodynamic matter
Nature Physics (2023)
-
Go with the flow
Nature Physics (2015)
-
Two dimensional colloidal crystals formed by particle self-assembly due to hydrodynamic interaction
Colloid and Polymer Science (2015)