Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Double ionization probed on the attosecond timescale

Abstract

Double ionization following the absorption of a single photon is one of the most fundamental processes requiring interaction between electrons1,2,3. Information about this interaction is usually obtained by detecting emitted particles without access to real-time dynamics. Here, attosecond light pulses4,5, electron wave packet interferometry6 and coincidence techniques7 are combined to measure electron emission times in double ionization of xenon using single ionization as a clock, providing unique insight into the two-electron ejection mechanism. Access to many-particle dynamics in real time is of fundamental importance for understanding processes induced by electron correlation in atomic, molecular and more complex systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the experiment.
Figure 2: Double ionization of Xe by attosecond pulse trains.
Figure 3: Sequential and non-sequential double ionization.
Figure 4: Temporal study of double ionization.

Similar content being viewed by others

References

  1. Briggs, J. S. & Schmidt, V. Differential cross sections for photo-double-ionization of the helium atom. J. Phys. B 33, R1–R48 (2000).

    Article  Google Scholar 

  2. Avaldi, L. & Huetz, A. Photodouble ionization and the dynamics of electron pairs in the continuum. J. Phys. B 38, S861–S891 (2005).

    Article  ADS  Google Scholar 

  3. Kheifets, A. S., Ivanov, I. A. & Bray, I. Timing analysis of two electron photoemission. J. Phys. B 44, 101003 (2011).

    ADS  Google Scholar 

  4. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  5. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  6. Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    Article  ADS  Google Scholar 

  7. Eland, J. H. D. et al. Complete two-electron spectra in double photoionization: The rare gases Ar, Kr, and Xe. Phys. Rev. Lett. 90, 053003 (2003).

    Article  ADS  Google Scholar 

  8. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  ADS  Google Scholar 

  9. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  10. Mauritsson, J. et al. Attosecond electron spectroscopy using a novel interferometric pump–probe technique. Phys. Rev. Lett. 105, 053001 (2010).

    Article  ADS  Google Scholar 

  11. Schneider, T., Chocian, P. L. & Rost, J-M. Separation and identification of dominant mechanisms in double photoionization. Phys. Rev. Lett. 89, 073002 (2002).

    Article  ADS  Google Scholar 

  12. Schmidt, V. Photoionization of atoms using synchrotron radiation. Rep. Prog. Phys. 55, 1483–1659 (1992).

    Article  ADS  Google Scholar 

  13. Weber, T. et al. Correlated electron emission in multiphoton double ionization. Nature 405, 658–661 (2000).

    Article  ADS  Google Scholar 

  14. Pfeiffer, A. N. et al. Timing the release in sequential double ionization. Nature Phys. 7, 428–433 (2011).

    Article  ADS  Google Scholar 

  15. Kikas, A. et al. High-resolution study of the correlation satellites in photoelectron spectra of the rare gases. J. Electron Spectrosc. Relat. Phenom. 77, 241–266 (1996).

    Article  Google Scholar 

  16. Alitalo, S. et al. The valence photoelectron satellite spectra of Kr and Xe. J. Electron Spectrosc. Relat. Phenom. 114–116, 141–146 (2001).

    Article  Google Scholar 

  17. Laulan, S. & Bachau, H. Correlation effects in two-photon single and double ionization of helium. Phys. Rev. A 68, 013409 (2003).

    Article  ADS  Google Scholar 

  18. Feist, J. et al. Probing electron correlation via attosecond XUV pulses in the two-photon double ionization of helium. Phys. Rev. Lett. 103, 063002 (2009).

    Article  ADS  Google Scholar 

  19. De Morisson Faria, C. F. & Liu, X. Electron electron correlation in strong laser fields. J. Mod. Opt. 58, 1076–1131 (2011).

    Article  ADS  Google Scholar 

  20. Horner, D. A., Morales, F., Rescigno, T. N., Martín, F. & McCurdy, C. W. Two-photon double ionization of helium above and below the threshold for sequential ionization. Phys. Rev. A 76, 030701 (2007).

    Article  ADS  Google Scholar 

  21. Rantovic, P. et al. Laser-enabled Auger decay in rare-gas atoms. Phys. Rev. Lett. 106, 053002 (2011).

    Article  ADS  Google Scholar 

  22. Guyétand, O. et al. Complete momentum analysis of multiphoton photo-double ionization of xenon by XUV and infrared photons. J. Phys. B 41, 065601 (2008).

    Article  Google Scholar 

  23. Pazourek, R., Feist, J., Nagele, S. & Burgdörfer, J. Attosecond streaking of correlated two-electron transitions in helium. Phys. Rev. Lett. 108, 163001 (2012).

    Article  ADS  Google Scholar 

  24. Guénot, D. et al. Photoemission-time-delay measurements and calculations close to the 3s-ionization-cross-section minimum in Ar. Phys. Rev. A 85, 053424 (2012).

    Article  ADS  Google Scholar 

  25. Ivanov, M. & Smirnova, O. How accurate is the attosecond streak camera?. Phys. Rev. Lett. 107, 213605 (2011).

    Article  ADS  Google Scholar 

  26. Dahlström, J. M., L’Huillier, A. & Maquet, A. Introduction to attosecond delays in photoionization. J. Phys. B 45, 183001 (2012).

    Article  Google Scholar 

  27. Yip, F. L., Rescigno, T. N., McCurdy, C. W. & Martín, F. Fully differential single-photon double ionization of neon and argon. Phys. Rev. Lett. 110, 173001 (2013).

    Article  ADS  Google Scholar 

  28. Amusia, M. Y. Atomic Photoeffect (Plenum Press, 1990).

    Book  Google Scholar 

  29. Schnadt, J. et al. Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor. Nature 418, 620–623 (2002).

    Article  ADS  Google Scholar 

  30. Harbach, P. H. P., Schneider, M., Faraji, S. & Dreuw, A. Intermolecular coulombic decay in biology: The initial electron detachment from FADH in DNA photolyases. J. Phys. Chem. Lett. 4, 943–949 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Maquet and R. Taïeb for fruitful theoretical discussions. This research was supported by the Marie Curie program ATTOFEL (ITN), the European Research Council (ALMA), the Swedish Research Council and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.P.M., D.G., C.L.A., D.K., S.K. and M.G. performed the experiment. E.P.M., J.M.D., E.L., A.S.K., D.G., A.L. and M.G. worked on the analysis and theoretical interpretation. E.P.M., S.L.S., A.L. and M.G. wrote the manuscript.

Corresponding author

Correspondence to Mathieu Gisselbrecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 607 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Månsson, E., Guénot, D., Arnold, C. et al. Double ionization probed on the attosecond timescale. Nature Phys 10, 207–211 (2014). https://doi.org/10.1038/nphys2880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing