Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bacterial transport suppressed by fluid shear

Abstract

Bacteria often live in dynamic fluid environments1,2,3 and flow can affect fundamental microbial processes such as nutrient uptake1,4 and infection5. However, little is known about the consequences of the forces and torques associated with fluid flow on bacteria. Through microfluidic experiments, we show that fluid shear produces strong spatial heterogeneity in suspensions of motile bacteria, characterized by up to 70% cell depletion from low-shear regions due to ‘trapping’ in high-shear regions. Two mathematical models and a scaling analysis accurately capture these observations, including the maximal depletion at mean shear rates of 2.5–10 s−1, and reveal that trapping by shear originates from the competition between the cell alignment with the flow and the stochasticity in the swimming orientation. We show that this shear-induced trapping directly impacts widespread bacterial behaviours, by hampering chemotaxis and promoting surface attachment. These results suggest that the hydrodynamic environment may directly affect bacterial fitness and should be carefully considered in the study of microbial processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trajectories of bacteria in flow and shear-induced depletion.
Figure 2: Bacterial depletion is maximized for intermediate shear rates.
Figure 3: Bacterial elongation and rotational-noise-control shear-induced trapping.
Figure 4: Shear-trapping stifles chemotaxis and promotes surface attachment.

Similar content being viewed by others

References

  1. Guasto, J. S., Rusconi, R. & Stocker, R. Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373–400 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  2. Tufenkji, N. Modeling microbial transport in porous media: Traditional approaches and recent developments. Adv. Water Resour. 30, 1455–1469 (2007).

    Article  ADS  Google Scholar 

  3. Dohnt, K. et al. An in vitro urinary tract catheter system to investigate biofilm development in catheter-associated urinary tract infections. J. Microbiol. Meth. 87, 302–308 (2011).

    Article  Google Scholar 

  4. Taylor, J. R. & Stocker, R. Trade-offs of chemotactic foraging in turbulent water. Science 338, 675–679 (2012).

    Article  ADS  Google Scholar 

  5. Brookes, J. D. et al. Fate and transport of pathogens in lakes and reservoirs. Environ. Int. 30, 741–759 (2004).

    Article  Google Scholar 

  6. Berke, A. P., Turner, L., Berg, H. C. & Lauga, E. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102 (2008).

    Article  ADS  Google Scholar 

  7. Li, G. et al. Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84, 041932 (2011).

    Article  ADS  Google Scholar 

  8. Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Nat. Acad. Sci. USA 110, 1187–1192 (2013).

    Article  ADS  Google Scholar 

  9. Riffell, J. A. & Zimmer, R. K. Sex and flow: the consequences of fluid shear for sperm-egg interactions. J. Exp. Biol. 210, 3644–3660 (2007).

    Article  Google Scholar 

  10. Ryan, J. N. & Elimelech, M. Colloid mobilization and transport in groundwater. Colloids Surf. A 107, 1–56 (1996).

    Article  Google Scholar 

  11. Eytan, O., Jaffa, A. J. & Elad, D. Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med. Eng. Phys. 23, 475–484 (2001).

    Article  Google Scholar 

  12. Velraeds, M. M. C., van de Belt-Gritter, B., van der Mei, H. C., Reid, G. & Busscher, H. J. Interference in initial adhesion of uropathogenic bacteria and yeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant. J. Med. Microbiol. 47, 1081–1085 (1998).

    Article  Google Scholar 

  13. Marcos, Fu, H., Powers, T. & Stocker, R. Bacterial rheotaxis. Proc. Natl Acad. Sci. USA 109, 4780–4785 (2012).

    Article  ADS  Google Scholar 

  14. Zöttl, A. & Stark, H. Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow. Eur. Phys. J. E 36, 4 (2013).

    Article  Google Scholar 

  15. Khurana, N. & Ouellette, N. T. Interactions between active particles and dynamical structures in chaotic flow. Phys. Fluids 24, 091902 (2012).

    Article  ADS  Google Scholar 

  16. Schnitzer, M. J. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553–2568 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  17. Celani, A. & Vergassola, M. Bacterial strategies for chemotaxis response. Proc. Natl Acad. Sci. USA 107, 1391–1396 (2010).

    Article  ADS  Google Scholar 

  18. Stecher, B. et al. Motility allows S. typhimurium to benefit from the mucosal defence. Cell. Microbiol. 10, 1166–1180 (2008).

    Article  Google Scholar 

  19. Lertsethtakarn, P., Ottemann, K. M. & Hendrixson, D. R. Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65, 389–410 (2011).

    Article  Google Scholar 

  20. Taylor, B. L., Zhulin, I. B. & Johnson, M. S. Aerotaxis and other energy-sensing behavior in bacteria. Annu. Rev. Microbiol. 53, 103–128 (1999).

    Article  Google Scholar 

  21. Locsei, J. T. & Pedley, T. J. Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape. Bull. Math. Biol. 71, 1089–1116 (2009).

    Article  MathSciNet  Google Scholar 

  22. Mercier-Bonin, M. et al. Dynamics of detachment of Escherichia coli from plasma-mediated coatings under shear flow. Biofouling 28, 881–894 (2012).

    Article  Google Scholar 

  23. Lecuyer, S. et al. Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophys. J. 100, 341–350 (2011).

    Article  ADS  Google Scholar 

  24. Thomas, W. E., Vogel, V. & Sokurenko, E. Biophysics of catch bonds. Annu. Rev. Biophys. 37, 399–416 (2008).

    Article  Google Scholar 

  25. Schonberg, J. A. & Hinch, E. J. Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203, 517–524 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  26. Aliseda, A. & Lasheras, J. C. Preferential concentration and rise velocity reduction of bubbles immersed in a homogeneous and isotropic turbulent flow. Phys. Fluids 23, 093301 (2011).

    Article  ADS  Google Scholar 

  27. Grandchamp, X., Coupier, G., Srivastav, A., Minetti, C. & Podgorski, T. Lift and down-gradient shear-induced diffusion in red blood cell suspensions. Phys. Rev. Lett. 110, 108101 (2013).

    Article  ADS  Google Scholar 

  28. Kang, S., Subramani, A., Hoek, E., Deshusses, M. & Matsumoto, M. Direct observation of biofouling in cross-flow microfiltration: mechanisms of deposition and release. J. Membrane Sci. 244, 151–165 (2004).

    Article  Google Scholar 

  29. Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Boffetta, V.I. Fernandez, G.L. Miño and N.T. Ouellette for discussions and comments on the manuscript, and acknowledge support by NSF grants OCE-0744641-CAREER, IOS-1120200, CBET-1066566, CBET-0966000 and a Gordon and Betty Moore Marine Microbial Initiative Investigator Award (award number 3783) (to R.S.).

Author information

Authors and Affiliations

Authors

Contributions

R.R., J.S.G. and R.S. designed research. R.R. and J.S.G. performed experiments and simulations, and analysed the data. R.R., J.S.G. and R.S. wrote the paper.

Corresponding author

Correspondence to Roman Stocker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusconi, R., Guasto, J. & Stocker, R. Bacterial transport suppressed by fluid shear. Nature Phys 10, 212–217 (2014). https://doi.org/10.1038/nphys2883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing