Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tuning Dirac states by strain in the topological insulator Bi2Se3

Abstract

Three-dimensional Bi-chalcogenide topological insulators exhibit surface states populated by massless Dirac fermions that are topologically protected from disorder scattering1. Here, we demonstrate that these states can be enhanced or destroyed by strain in the vicinity of grain boundaries on the surface of epitaxial Bi2Se3(0001) thin films. Using scanning tunnelling and transmission electron microscopy, we show that the low-angle tilt grain boundaries in Bi2Se3(0001) films consist of arrays of alternating edge dislocation pairs. Along the boundary, these dislocations introduce periodic in-plane compressive and tensile strains. From tunnelling spectroscopy experiments and first-principles calculations, we find that whereas the energy of the Dirac state shifts in regions under tensile strain, a gap opens in regions under compressive strain, indicative of the destruction of the Dirac states at the surface. These results demonstrate that Dirac states can be tuned by strain at the atomic scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Grain boundaries in MBE-grown Bi2Se3 films on SiC(0001).
Figure 2: Crystallography of Bi2Se3 films on graphene/SiC(0001) and strain field mapping of grain boundaries.
Figure 3: Calculations of Bi2Se3(0001) Dirac states under strain.
Figure 4: Spatially resolved scanning tunnelling spectroscopy of grain boundaries (GBs).

Similar content being viewed by others

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 ( 2010).

    Article  ADS  Google Scholar 

  2. Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 ( 2013).

    Article  ADS  Google Scholar 

  3. Chang, C-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  Google Scholar 

  4. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  5. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  6. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  ADS  Google Scholar 

  7. Young, S. M. et al. Theoretical investigation of the evolution of the topological phase of Bi2Se3 under mechanical strain. Phys. Rev. B 84, 085106 (2011).

    Article  ADS  Google Scholar 

  8. Liu, W. et al. Anisotropic interactions and strain-induced topological phase transition in Sb2Se3 and Bi2Se3 . Phys. Rev. B 84, 245105 (2011).

    Article  ADS  Google Scholar 

  9. Liu, Y., Weinert, M. & Li, L. Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001). Phys. Rev. Lett. 108, 115501 (2012).

    Article  ADS  Google Scholar 

  10. Li, Y-Y. et al. Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv. Mater. 22, 4002–4007 (2010).

    Article  Google Scholar 

  11. Li, H. D. et al. The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator. New J. Phys. 12, 103038 (2010).

    Article  ADS  Google Scholar 

  12. He, L. et al. Epitaxial growth of Bi2Se3 topological insulator thin films on Si (111). J. Appl. Phys. 109, 103702 (2011).

    Article  ADS  Google Scholar 

  13. Chang, C-Z. et al. Growth of quantum well films of topological insulator Bi2Se3 on insulating substrate. SPIN 1, 21–25 (2011).

    Article  Google Scholar 

  14. Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3 . Adv. Mater. 24, 5581–5585 (2012).

    Article  Google Scholar 

  15. Hirth, J. P. & Lothe, J. Theory of dislocations, 2 edn (John Wiley, 1982).

    Google Scholar 

  16. Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  17. Jesson, D. E., Chen, K. M., Pennycook, S. J., Thundat, T. & Warmack, R. J. Crack-like sources of dislocation nucleation and multiplication in thin films. Science 268, 1161–1163 (1995).

    Article  ADS  Google Scholar 

  18. Belk, J. G., Pashley, D. W., Joyce, B. A. & Jones, T. S. Dislocation displacement field at the surface of InAs thin films grown on GaAs(110). Phys. Rev. B 58, 16194–16201 (1998).

    Article  ADS  Google Scholar 

  19. Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Phys. 6, 584–588 (2010).

    Article  ADS  Google Scholar 

  20. Cheng, P. et al. Landau quantization of topological surface states in Bi2Se3 . Phys. Rev. Lett. 105, 076801 (2010).

    Article  ADS  Google Scholar 

  21. Kim, S. et al. Surface scattering via bulk continuum states in the 3D topological insulator Bi2Se3 . Phys. Rev. Lett. 107, 056803 (2011).

    Article  ADS  Google Scholar 

  22. Liu, Y. et al. Charging Dirac states at antiphase domain boundaries in the three-dimensional topological insulator Bi2Se3 . Phys. Rev. Lett. 110, 186804 (2013).

    Article  ADS  Google Scholar 

  23. Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nature Phys. 5, 298–303 (2009).

    Article  ADS  Google Scholar 

  24. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    Article  ADS  Google Scholar 

  25. Beidenkopf, H. et al. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nature Phys. 7, 939–943 (2011).

    Article  ADS  Google Scholar 

  26. Kim, D. et al. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3 . Nature Phys. 8, 459–463 (2012).

    Article  ADS  Google Scholar 

  27. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  ADS  Google Scholar 

  28. Tsen, A. W. et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012).

    Article  ADS  Google Scholar 

  29. Kumar, S. B. & Guo, J. Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 12, 1362–1366 (2012).

    Article  ADS  Google Scholar 

  30. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding for this work is provided by NSF (DMR-1105839).

V.K.L. and P.L.G. thank the Royal Society International Exchanges Scheme for travel support and K. McKenna of the University of York for fruitful discussions.

Author information

Authors and Affiliations

Contributions

Y.L., Y.Y.L., S.R. and L.Li carried out the MBE growth and STM experiments. D.G., L.Lari., V.K.L. performed the TEM experiment. P.L.G. performed the strain analysis, M.W. performed the DFT calculations. All authors contributed to the analysis and interpretation of the data. L.Li, M.W., and V.K.L. wrote the paper.

Corresponding authors

Correspondence to V. K. Lazarov or L. Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, Y., Rajput, S. et al. Tuning Dirac states by strain in the topological insulator Bi2Se3. Nature Phys 10, 294–299 (2014). https://doi.org/10.1038/nphys2898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing