Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bipartite magnetic parent phases in the iron oxypnictide superconductor

Abstract

High-temperature superconductivity appears as a consequence of doping charge carriers into an undoped parent compound exhibiting antiferromagnetic order; therefore, ground-state properties of the parent compound are highly relevant to the superconducting state1,2. On the basis of this logic, spin fluctuations have been considered as the origin of pairing of the superconducting electrons in the cuprates1. As possible pairing mechanisms, there is growing interest in unconventional spin fluctuations or advanced orbital fluctuations owing to the characteristic multi-orbital states in iron pnictides3,4,5,6. Here, we report the discovery of an antiferromagnetic phase as well as a unique structural transition in electron-overdoped LaFeAsO1xHx (x 0.5), whereby a second parent phase is uncovered, albeit heavily doped. The unprecedented two-dome superconducting phases observed in this material can be interpreted as a consequence of the carrier doping starting from the original x 0 and additional x 0.5 parent phases towards the intermediate region7. The bipartite parent phases with distinct physical properties in the second magnetic phase provide us with an interesting example to illustrate the intimate interplay between the magnetic interaction, structural change and orbital degree of freedom in iron pnictide superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pulsed neutron diffraction measurements of LaFeAsO1xHx.
Figure 2: Zero-field muon spin relaxation measurements.
Figure 3: Synchrotron X-ray diffraction measurements.
Figure 4: Magnetic, structural and superconducting phase diagram of LaFeAsO1xHx.

Similar content being viewed by others

References

  1. Lee, A. P., Nagaosa, N & Wen, X-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  2. Paglione, J. & Greene, R. L. High-temperature superconductivity in iron-based materials. Nature Phys. 6, 645–658 (2010).

    Article  ADS  Google Scholar 

  3. Singh, D. J. & Du, M-H. Density functional study of LaFeAsO1−xFx: A low carrier density superconductor near itinerant magnetism. Phys. Rev. Lett. 100, 237003 (2008).

    Article  ADS  Google Scholar 

  4. Kuroki, K. et al. Unconventional pairing originating from disconnected Fermi surfaces of superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  5. Mazin, I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx . Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  6. Kontani, H. & Onari, S. Orbital-fluctuation-mediated superconductivity in iron pnictides: Analysis of the five-orbital Hubbard–Holstein model. Phys. Rev. Lett. 104, 157001 (2010).

    Article  ADS  Google Scholar 

  7. Iimura, S. et al. Two-dome structure in electron-doped iron arsenide superconductors. Nature Commun. 3, 943 (2012).

    Article  ADS  Google Scholar 

  8. Kamihara, Y. et al. Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128, 10012–10013 (2006).

    Article  Google Scholar 

  9. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05−0.12) with Tc= 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  Google Scholar 

  10. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  ADS  Google Scholar 

  11. Takahashi, H. et al. Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs. Nature 453, 376–378 (2008).

    Article  ADS  Google Scholar 

  12. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2 . Phys. Rev. Lett 101, 107006 (2008).

    Article  ADS  Google Scholar 

  13. Yildirim, T. Origin of the 150-K anomaly in LaFeAsO: Competing antiferromagnetic interactions, frustration, and a structural phase transition. Phys. Rev. Lett. 101, 057010 (2008).

    Article  ADS  Google Scholar 

  14. Ma, F. & Lu, Z-Y. Iron-based layered compound LaFeAsO is an antiferromagnetic semimetal. Phys. Rev. B 78, 033111 (2008).

    Article  ADS  Google Scholar 

  15. Luetkens, H. et al. The electronic phase diagram of the LaO1−xFxFeAs superconductor. Nature Mater. 8, 305–309 (2009).

    Article  ADS  Google Scholar 

  16. Matsuishi, S. et al. Structural analysis and superconductivity of CeFeAsO1−xHx . Phys. Rev. B 85, 014514 (2012).

    Article  ADS  Google Scholar 

  17. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  ADS  Google Scholar 

  18. De la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  ADS  Google Scholar 

  19. Qureshi, N. et al. Crystal and magnetic structure of the oxypnictide superconductor LaFeAsO1−xFx: A neutron-diffraction study. Phys. Rev. B 82, 184521 (2010).

    Article  ADS  Google Scholar 

  20. Huang, Q. et al. Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors. Phys. Rev. Lett. 101, 257003 (2008).

    ADS  Google Scholar 

  21. Lumsden, M. D. & Christianson, A. D. Magnetism in Fe-based superconductors. J. Phys. Condens. Matter 22, 203203 (2010).

    Article  ADS  Google Scholar 

  22. Klauss, H-H. et al. Commensurate spin density wave in LaFeAsO: A local probe study. Phys. Rev. Lett. 101, 077005 (2008).

    Article  ADS  Google Scholar 

  23. Uemura, Y. J. Superconductivity: Commonalities in phase and mode. Nature Mater. 8, 253–255 (2009).

    Article  ADS  Google Scholar 

  24. Takeshita, S. et al. Insular superconductivity in a Co-doped iron pnictide CaFe1−xCoxAsF. Phys. Rev. Lett. 103, 027002 (2009).

    Article  ADS  Google Scholar 

  25. Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007).

    Article  Google Scholar 

  26. Lee, C-C., Yin, W-G. & Ku, W. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).

    Article  ADS  Google Scholar 

  27. Lv, W., Wu, J. & Phillips., P. Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides. Phys. Rev. B 80, 224506 (2009).

    Article  ADS  Google Scholar 

  28. de’ Medici, L., Hassan, S. R., Capone, M. & Dai, X. Orbital-selective Mott transition out of band degeneracy lifting. Phys. Rev. Lett. 102, 126401 (2009).

    Article  ADS  Google Scholar 

  29. Lanatà, N. et al. Orbital selectivity in Hund’s metals: The iron chalcogenides. Phys. Rev. B 87, 045122 (2013).

    Article  ADS  Google Scholar 

  30. Yamakawa, Y. et al. Phase diagram and superconducting states in LaFeAsO1−xHx based on the multiorbital extended Hubbard model. Phys. Rev. B 88, 041106(R) (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Yamada for helpful discussions. The neutron, muon and synchrotron radiation experiments were performed at J-PARC (BL08-SuperHRPD, BL21-NOVA, Muon D1), PSI, KEK-PF (BL-8A/8B), and SPring-8 with the approval of JASRI (BL11XU) (Proposal Nos. 2013S2-002, 2009S05, 2013A3502). This work was supported by MEXT Elements Strategy Initiative to Form Core Research Center.

Author information

Authors and Affiliations

Authors

Contributions

Y.M., R. Kadono, S.I., S.M. and H. Hosono conceived the study. M.H., K.K., M.M., I.Y., A.K. and R. Kadono carried out the muon experiment. S.I. synthesized the samples. J.Y. and R. Kumai measured the synchrotron X-ray diffraction. H. Hiraka, J.Y., K. Ikeda, P.M., Y.I., S.T., T.K. and T.O. performed the neutron scattering experiments. J.Y., M.Y. and K. Ishii measured the X-ray absorption. M.H., K.K., J.Y. and H. Hiraka co-wrote the manuscript. All the authors discussed the results and the manuscript.

Corresponding author

Correspondence to K. M. Kojima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 731 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiraishi, M., Iimura, S., Kojima, K. et al. Bipartite magnetic parent phases in the iron oxypnictide superconductor. Nature Phys 10, 300–303 (2014). https://doi.org/10.1038/nphys2906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2906

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing