Abstract
A laser is not necessarily a sophisticated device: pumping an amplifying medium randomly filled with scatterers makes a perfectly viable ‘random laser’. The absence of mirrors greatly simplifies laser design, but control over the emission wavelength and directionality is lost, seriously hindering prospects1,2,3,4 for this otherwise simple laser. Recently, we proposed an approach to tame random lasers5, inspired by coherent light control in complex media6. Here, we implement this method in an optofluidic random laser7 where modes are spatially extended and overlap, making individual mode selection impossible, a priori. We show experimentally that control over laser emission can be regained even in this extreme case. By actively shaping the optical pump within the random laser, single-mode operation at any selected wavelength is achieved with spectral selectivity down to 0.06 nm and more than 10 dB side-lobe rejection. This method paves the way towards versatile tunable and controlled random lasers as well as the taming of other laser sources.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Cao, H. Lasing in random media. Waves Random Media 13, R1–R39 (2003).
Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).
Wiersma, D. S. & Noginov, M. A. Special issue on nano and random lasers. J. Opt. 12, 020201 (2010).
Wiersma, D. S. Disordered photonics. Nature Photon. 7, 188–196 (2013).
Bachelard, N., Andreasen, J., Gigan, S. & Sebbah, P. Taming random lasers through active spatial control of the pump. Phys. Rev. Lett. 109, 033903 (2012).
Mosk, A., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).
Bhaktha, S. B. N., Noblin, X., Bachelard, N. & Sebbah, P. Optofluidic random laser. Appl. Phys. Lett. 101, 151101 (2012).
Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nature Photon. 6, 355–359 (2012).
Jin-Kyu Yang, J-K. et al. Lasing in localized modes of a slow light photonic crystal waveguide. Appl. Phys. Lett. 98, 241107 (2011).
Liu, B., Yamilov, A., Ling, Y., Xu, J. Y. & Cao, H. Dynamic nonlinear effect on lasing in a random medium. Phys. Rev. Lett. 91, 063903 (2003).
Stano, P. & Jacquod, P. Suppression of interactions in multimode random lasers in the Anderson localized regime. Nature Photon. 7, 66–68 (2013).
Van der Molen, K. L., Tjerkstra, R. W., Mosk, A. P. & Lagendijk, A. Spatial extent of random laser modes. Phys. Rev. Lett. 98, 143901 (2007).
Türeci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).
Andreasen, J., Sebbah, P. & Vanneste, C. Nonlinear effects in random lasers. J. Opt. Soci Am. B 28, 2947–2955 (2011).
Andreasen, J., Sebbah, P. & Vanneste, C. Coherent instabilities in random lasers. Phys. Rev. A 84, 023826 (2011).
Kogelnik, H. & Shank, C. V., Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971).
Shank, C. V., Bjorkholm, J. E. & Kogelnik, H. Tunable distributed-feedback dye laser. Appl. Phys. Lett. 18, 395–396 (1971).
Feng, J., Chen, T. R., Zhao, B. & Yariv, A. Reduction of the frequency chirp of two section distributed feedback laser by nonuniform current injection. Appl. Phys. Lett. 66, 2028–2030 (1995).
Leonetti, M. & López, C. Active subnanometer spectral control of a random laser. Appl. Phys. Lett. 102, 071105 (2013).
Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).
Won, R. Optofluidics lasers: In random form. Nature Photon. 7, 3 (2013).
Andreasen, J., Vanneste, C., Ge, L. & Cao, H. Effects of spatially nonuniform gain on lasing modes in weakly scattering random systems. Phys. Rev. A 81, 043818 (2010).
Andreasen, J. et al. Partially pumped random lasers. Int. J. Mod. Phys. B 28, 1430001 (2014).
Hisch, T, Liertzer, M., Pogany, D., Mintert, F. & Rotter, S. Pump-controlled directional light emission from random lasers. Phys. Rev. Lett. 111, 023902 (2013).
Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos 2nd edn (Springer-Verlag, 2008).
Liang, H. K. et al. Electrically pumped mid-infrared random lasers. Adv. Mater. 25, 6859–6863 (2013).
Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).
Xia, Y. N. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).
Sloane, N. J. A. & Harwit, M. Masks for hadamard transform optics, and weighing designs. Appl. Opt. 15, 107–114 (1976).
Harwit, M. & Sloane, N. J. A. Hadamard Transform Optics (Academic, 1979).
Acknowledgements
We thank J. P. Huignard, S. Bhaktha and J. Andreasen for useful discussions. We thank Y. Izmaylov-Mavrikova for her help in the sample microfabrication. P.S., N.B. and S.G. are grateful to the LABEX WIFI (Laboratory of Excellence within the French Program ‘Investments for the Future’) under reference ANR-10-IDEX-0001-02 PSL*. P.S. is grateful to the ANR under Grant No. ANR-08-BLAN-0302-01 and to the Groupement de Recherche 3219 MesoImage. S.G. is funded by the European Research Council (grant number 278025).
Author information
Authors and Affiliations
Contributions
P.S. and S.G. initiated the study. X.N. designed and prepared the samples. N.B. set up the experiments and collected all the data in the laboratory of P.S. P.S. and N.B. analysed the data and prepared the manuscript. S.G. contributed to data interpretation and manuscript preparation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 739 kb)
Supplementary Movie
Supplementary Movie 1 (WMV 4529 kb)
Rights and permissions
About this article
Cite this article
Bachelard, N., Gigan, S., Noblin, X. et al. Adaptive pumping for spectral control of random lasers. Nature Phys 10, 426–431 (2014). https://doi.org/10.1038/nphys2939
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2939
This article is cited by
-
Structural design of random lasers with specified emission bands
Optical Review (2024)
-
2D tunable all-solid-state random laser in the visible
Scientific Reports (2023)
-
Self-organized lasers from reconfigurable colloidal assemblies
Nature Physics (2022)
-
Sensitivity and spectral control of network lasers
Nature Communications (2022)
-
Controlling random lasing action
Nature Physics (2022)