Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adaptive pumping for spectral control of random lasers

Abstract

A laser is not necessarily a sophisticated device: pumping an amplifying medium randomly filled with scatterers makes a perfectly viable ‘random laser’. The absence of mirrors greatly simplifies laser design, but control over the emission wavelength and directionality is lost, seriously hindering prospects1,2,3,4 for this otherwise simple laser. Recently, we proposed an approach to tame random lasers5, inspired by coherent light control in complex media6. Here, we implement this method in an optofluidic random laser7 where modes are spatially extended and overlap, making individual mode selection impossible, a priori. We show experimentally that control over laser emission can be regained even in this extreme case. By actively shaping the optical pump within the random laser, single-mode operation at any selected wavelength is achieved with spectral selectivity down to 0.06 nm and more than 10 dB side-lobe rejection. This method paves the way towards versatile tunable and controlled random lasers as well as the taming of other laser sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optofluidic random laser.
Figure 2: From multimode to single-mode operation.
Figure 3: Convergence and efficiency of the optimization process.
Figure 4: Spectral selectivity.
Figure 5: Intensity versus pump fluence.

Similar content being viewed by others

References

  1. Cao, H. Lasing in random media. Waves Random Media 13, R1–R39 (2003).

    Article  ADS  Google Scholar 

  2. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  3. Wiersma, D. S. & Noginov, M. A. Special issue on nano and random lasers. J. Opt. 12, 020201 (2010).

    Article  ADS  Google Scholar 

  4. Wiersma, D. S. Disordered photonics. Nature Photon. 7, 188–196 (2013).

    Article  ADS  Google Scholar 

  5. Bachelard, N., Andreasen, J., Gigan, S. & Sebbah, P. Taming random lasers through active spatial control of the pump. Phys. Rev. Lett. 109, 033903 (2012).

    Article  ADS  Google Scholar 

  6. Mosk, A., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  7. Bhaktha, S. B. N., Noblin, X., Bachelard, N. & Sebbah, P. Optofluidic random laser. Appl. Phys. Lett. 101, 151101 (2012).

    Article  ADS  Google Scholar 

  8. Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nature Photon. 6, 355–359 (2012).

    Article  ADS  Google Scholar 

  9. Jin-Kyu Yang, J-K. et al. Lasing in localized modes of a slow light photonic crystal waveguide. Appl. Phys. Lett. 98, 241107 (2011).

    Article  ADS  Google Scholar 

  10. Liu, B., Yamilov, A., Ling, Y., Xu, J. Y. & Cao, H. Dynamic nonlinear effect on lasing in a random medium. Phys. Rev. Lett. 91, 063903 (2003).

    Article  ADS  Google Scholar 

  11. Stano, P. & Jacquod, P. Suppression of interactions in multimode random lasers in the Anderson localized regime. Nature Photon. 7, 66–68 (2013).

    Article  ADS  Google Scholar 

  12. Van der Molen, K. L., Tjerkstra, R. W., Mosk, A. P. & Lagendijk, A. Spatial extent of random laser modes. Phys. Rev. Lett. 98, 143901 (2007).

    Article  ADS  Google Scholar 

  13. Türeci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).

    Article  ADS  Google Scholar 

  14. Andreasen, J., Sebbah, P. & Vanneste, C. Nonlinear effects in random lasers. J. Opt. Soci Am. B 28, 2947–2955 (2011).

    Article  ADS  Google Scholar 

  15. Andreasen, J., Sebbah, P. & Vanneste, C. Coherent instabilities in random lasers. Phys. Rev. A 84, 023826 (2011).

    Article  ADS  Google Scholar 

  16. Kogelnik, H. & Shank, C. V., Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971).

    Article  ADS  Google Scholar 

  17. Shank, C. V., Bjorkholm, J. E. & Kogelnik, H. Tunable distributed-feedback dye laser. Appl. Phys. Lett. 18, 395–396 (1971).

    Article  ADS  Google Scholar 

  18. Feng, J., Chen, T. R., Zhao, B. & Yariv, A. Reduction of the frequency chirp of two section distributed feedback laser by nonuniform current injection. Appl. Phys. Lett. 66, 2028–2030 (1995).

    Article  ADS  Google Scholar 

  19. Leonetti, M. & López, C. Active subnanometer spectral control of a random laser. Appl. Phys. Lett. 102, 071105 (2013).

    Article  ADS  Google Scholar 

  20. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  21. Won, R. Optofluidics lasers: In random form. Nature Photon. 7, 3 (2013).

    ADS  Google Scholar 

  22. Andreasen, J., Vanneste, C., Ge, L. & Cao, H. Effects of spatially nonuniform gain on lasing modes in weakly scattering random systems. Phys. Rev. A 81, 043818 (2010).

    Article  ADS  Google Scholar 

  23. Andreasen, J. et al. Partially pumped random lasers. Int. J. Mod. Phys. B 28, 1430001 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  24. Hisch, T, Liertzer, M., Pogany, D., Mintert, F. & Rotter, S. Pump-controlled directional light emission from random lasers. Phys. Rev. Lett. 111, 023902 (2013).

    Article  ADS  Google Scholar 

  25. Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos 2nd edn (Springer-Verlag, 2008).

    MATH  Google Scholar 

  26. Liang, H. K. et al. Electrically pumped mid-infrared random lasers. Adv. Mater. 25, 6859–6863 (2013).

    Article  Google Scholar 

  27. Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).

    Article  ADS  Google Scholar 

  28. Xia, Y. N. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  ADS  Google Scholar 

  29. Sloane, N. J. A. & Harwit, M. Masks for hadamard transform optics, and weighing designs. Appl. Opt. 15, 107–114 (1976).

    Article  ADS  Google Scholar 

  30. Harwit, M. & Sloane, N. J. A. Hadamard Transform Optics (Academic, 1979).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank J. P. Huignard, S. Bhaktha and J. Andreasen for useful discussions. We thank Y. Izmaylov-Mavrikova for her help in the sample microfabrication. P.S., N.B. and S.G. are grateful to the LABEX WIFI (Laboratory of Excellence within the French Program ‘Investments for the Future’) under reference ANR-10-IDEX-0001-02 PSL*. P.S. is grateful to the ANR under Grant No. ANR-08-BLAN-0302-01 and to the Groupement de Recherche 3219 MesoImage. S.G. is funded by the European Research Council (grant number 278025).

Author information

Authors and Affiliations

Authors

Contributions

P.S. and S.G. initiated the study. X.N. designed and prepared the samples. N.B. set up the experiments and collected all the data in the laboratory of P.S. P.S. and N.B. analysed the data and prepared the manuscript. S.G. contributed to data interpretation and manuscript preparation.

Corresponding author

Correspondence to Patrick Sebbah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 739 kb)

Supplementary Movie

Supplementary Movie 1 (WMV 4529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachelard, N., Gigan, S., Noblin, X. et al. Adaptive pumping for spectral control of random lasers. Nature Phys 10, 426–431 (2014). https://doi.org/10.1038/nphys2939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing