Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intrinsic Josephson junctions in the iron-based multi-band superconductor (V2Sr4O6)Fe2As2

Abstract

In layered superconductors, Josephson junctions may be formed within the unit cell1,2,3 as a result of sufficiently low inter-layer coupling. These intrinsic Josephson junction (iJJ) systems4 have attracted considerable interest for their application potential in quantum computing as well as efficient sources of THz radiation, closing the famous ‘THz gap’5. So far, iJJ have been demonstrated in single-band, copper-based high-Tc superconductors, mainly in Bi–Sr–Ca–Cu–O (refs 6, 7, 8). Here we report clear experimental evidence for iJJ behaviour in the iron-based superconductor (V2Sr4O6)Fe2As2. The intrinsic junctions are identified by periodic oscillations of the flux-flow voltage on increasing a well-aligned in-plane magnetic field9. The periodicity is explained by commensurability effects between the Josephson vortex lattice and the crystal structure, which is a hallmark signature of Josephson vortices confined into iJJ stacks10,11. This finding adds the pnictide (V2Sr4O6)Fe2As2 to the copper-based iJJ materials of interest for Josephson junction applications. In particular, novel devices based on multi-band Josephson coupling may be realized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The intrinsic Josephson junction pnictide (V2Sr4O6)Fe2As2.
Figure 2: Josephson vortex commensurability oscillations.
Figure 3: Comparison against copper-based intrinsic Josephson junction compounds.

Similar content being viewed by others

References

  1. Tachiki, M. & Takahashi, S. Strong vortex pinning intrinsic in high-Tc oxide superconductors. Solid State Commun. 70, 291–295 (1989).

    Article  ADS  Google Scholar 

  2. Feinberg, D. & Villard, C. Intrinsic pinning and lock-in transition of flux lines in layered type-II superconductors. Phys. Rev. Lett. 65, 919–922 (1990).

    Article  ADS  Google Scholar 

  3. Kleiner, R. & Müller, P. Intrinsic Josephson effects in high-Tc superconductors. Phys. Rev. B 49, 1327–1343 (1994).

    Article  ADS  Google Scholar 

  4. Kwok, W. K. et al. Direct observation of intrinsic pinning by layered structure in single-crystal YBa2Cu3O7 − δ . Phys. Rev. B 67, 390–393 (1991).

    Google Scholar 

  5. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  6. Vedeneev, S. & Maude, D. In-plane current-voltage characteristics and oscillatory Josephson-vortex flow resistance in La-free Bi2 + xSr2 − xCuO6 + δ single crystals in high magnetic fields. Phys. Rev. B 77, 064511 (2008).

    Article  ADS  Google Scholar 

  7. Li, S-X. et al. Observation of macroscopic quantum tunneling in a single Bi2Sr2CaCu2O8 + δ surface intrinsic Josephson junction. Phys. Rev. Lett. 99, 037002 (2007).

    Article  ADS  Google Scholar 

  8. Schlenga, K. et al. Subgap structures in intrinsic Josephson junctions of Tl2Ba2Ca2Cu3O10 + d and Bi2Sr2CaCu2O8 + d . Phys. Rev. Lett. 76, 4943–4946 (1996).

    Article  ADS  Google Scholar 

  9. Ooi, S., Mochiku, T. & Hirata, K. Periodic oscillations of Josephson-vortex flow resistance in Bi2Sr2CaCu2O8 + y . Phys. Rev. Lett. 89, 247002 (2002).

    Article  ADS  Google Scholar 

  10. Koshelev, A. Magnetic oscillations of critical current in intrinsic Josephson-junction stacks. Phys. Rev. B 75, 214513 (2007).

    Article  ADS  Google Scholar 

  11. Machida, M. Dynamical matching of Josephson vortex lattice with sample edge in layered high-Tc superconductors: Origin of the periodic oscillation of flux flow resistance. Phys. Rev. Lett. 90, 037001 (2003).

    Article  ADS  Google Scholar 

  12. Ota, Y., Machida, M., Koyama, T. & Matsumoto, H. Theory of vortex structure in Josephson junctions with multiple tunneling channels: Vortex enlargement as a probe of ±s-wave superconductivity. Phys. Rev. B 81, 014502 (2010).

    Article  ADS  Google Scholar 

  13. Inomata, K. et al. Macroscopic quantum tunneling in a d-wave high-Tc Bi2Sr2CaCu2O8 + δ superconductor. Phys. Rev. Lett. 95, 107005 (2005).

    Article  ADS  Google Scholar 

  14. Leggett, A. J. Number-phase fluctuations in two-band superconductors. Prog. Theor. Phys. 36, 901–930 (1966).

    Article  ADS  Google Scholar 

  15. Nakamura, H., Machida, M., Koyama, T. & Hamada, N. First-principles study for the anisotropy of iron-based superconductors toward power and device applications. J. Phys. Soc. Jpn 78, 123712 (2009).

    Article  ADS  Google Scholar 

  16. Ota, Y., Machida, M. & Koyama, T. Variety of c-axis collective excitations in layered multigap superconductors. Phys. Rev. Lett. 106, 157001 (2011).

    Article  ADS  Google Scholar 

  17. Koyama, T., Ota, Y. & Machida, M. IV characteristics in multi-gap intrinsic Josephson junction stacks. Phys. C Supercond. 470, 1481–1484 (2010).

    Article  ADS  Google Scholar 

  18. Ozyuzer, L. et al. Emission of coherent THz radiation from superconductors. Science 318, 1291–1293 (2007).

    Article  ADS  Google Scholar 

  19. Kashiwaya, H. et al. C-axis critical current of a PrFeAsO0.7 single crystal. Appl. Phys. Lett. 96, 202504 (2010).

    Article  ADS  Google Scholar 

  20. Iida, K. et al. Oxypnictide SmFeAs(O, F) superconductor: A candidate for high-field magnet applications. Sci. Rep. 3, 2139 (2013).

    Article  Google Scholar 

  21. Blatter, G., Feigel’man, M., Geshkenbein, V., Larkin, A. & Vinokur, V. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1387 (1994).

    Article  ADS  Google Scholar 

  22. Moll, P. J. W. et al. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nature Mater. 12, 134–138 (2013).

    Article  ADS  Google Scholar 

  23. Moll, P. J. W. et al. High magnetic-field scales and critical currents in SmFeAs(O, F) crystals. Nature Mater. 9, 628–633 (2010).

    Article  ADS  Google Scholar 

  24. Zhu, X. et al. Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K. Phys. Rev. B 79, 220512 (2009).

    Article  ADS  Google Scholar 

  25. Nakamura, H. & Machida, M. Magnetic ordering in blocking layer and highly anisotropic electronic structure of high-Tc iron-based superconductor Sr2VFeAsO3: LDA+U study. Phys. Rev. B 82, 094503 (2010).

    Article  ADS  Google Scholar 

  26. Qian, T. et al. Quasinested Fe orbitals versus Mott-insulating V orbitals in superconducting Sr2VFeAsO3 as seen from angle-resolved photoemission. Phys. Rev. B 83, 140513 (2011).

    Article  ADS  Google Scholar 

  27. Kadowaki, K. et al. Dynamical properties of Josephson vortices in mesoscopic intrinsic Josephson junctions in single crystalline Bi2Sr2CaCu2O8 + δ . Phys. C Supercond. 4370–438, 111–117 (2006).

    Article  ADS  Google Scholar 

  28. Nagao, M. et al. Periodic oscillations of Josephson-vortex flow resistance in oxygen-deficient YBa2Cu3Ox . Phys. Rev. B 74, 054502 (2006).

    Article  ADS  Google Scholar 

  29. Rapp, M., Murk, A., Semerad, R. & Prusseit, W. c-axis conductivity and intrinsic Josephson effects in YBa2Cu3O7 − δ . Phys. Rev. Lett. 77, 928–931 (1996).

    Article  ADS  Google Scholar 

  30. Han, F. et al. Structural and transport properties of Sr2VO3 − δ FeAs superconductors with different oxygen deficiencies. Sci. China A 53, 1202–1206 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Blatter and D. Geshkenbein for stimulating discussions. FIB work was supported by EMEZ and ScopeM at ETH Zürich. Work in Nanjing was supported by the Ministry of Science and Technology of China (973 Projects: No. 2011CBA00102, No. 2010CB923002).

Author information

Authors and Affiliations

Authors

Contributions

P.J.W.M. designed the experiment, FIB-structured the crystals and performed the measurements. Single crystals were grown and analysed by X.Z., P.C. and H-H.W. P.J.W.M. and B.B. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Philip J. W. Moll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moll, P., Zhu, X., Cheng, P. et al. Intrinsic Josephson junctions in the iron-based multi-band superconductor (V2Sr4O6)Fe2As2. Nature Phys 10, 644–647 (2014). https://doi.org/10.1038/nphys3034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing