Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonlinear inelastic electron scattering revealed by plasmon-enhanced electron energy-loss spectroscopy

Abstract

Electron energy-loss spectroscopy is a powerful tool for identifying the chemical composition of materials1,2,3,4,5. It relies mostly on the measurement of inelastic electrons, which carry specific atomic or molecular information. Inelastic electron scattering, however, has a very low intensity, often orders of magnitude weaker than that of elastically scattered electrons. Here, we report the observation of enhanced inelastic electron scattering from silver nanostructures, the intensity of which can reach up to 60% of its elastic counterpart. A home-made scanning probe electron energy-loss spectrometer6 was used to produce highly localized plasmonic excitations, significantly enhancing the strength of the local electric field of silver nanostructures. The intensity of inelastic electron scattering was found to increase nonlinearly with respect to the electric field generated by the tip–sample bias, providing direct evidence of nonlinear electron scattering processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental arrangement.
Figure 2: Experimental data.
Figure 3: The multiple-scattering process involved in SPR excitation.
Figure 4: Relative intensity of the SPR energy-loss peak for three tip–sample distances.
Figure 5: Results of experiments on 10 nm and 100 nm thick Ag on HOPG.

Similar content being viewed by others

References

  1. Rocca, M. Low-energy EELS investigation of surface electronic excitations on metals. Surf. Sci. Rep. 22, 1–71 (1995).

    Article  ADS  Google Scholar 

  2. Suenaga, K. et al. Element-selective single atom imaging. Science 290, 2280–2282 (2000).

    Article  ADS  Google Scholar 

  3. Varela, M. et al. Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 95502 (2004).

    Article  ADS  Google Scholar 

  4. Kimoto, K. et al. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007).

    Article  ADS  Google Scholar 

  5. Colliex, C. et al. Capturing the signature of single atoms with the tiny probe of a STEM. Ultramicroscopy 123, 80–89 (2012).

    Article  Google Scholar 

  6. Xu, C. K. et al. Spatially resolved scanning probe electron energy spectroscopy for Ag islands on a graphite surface. Rev. Sci. Instrum. 80, 103705 (2009).

    Article  ADS  Google Scholar 

  7. Lucas, A. A. & Šunjić, M. Fast-electron spectroscopy of surface excitations. Phys. Rev. Lett. 26, 229–232 (1971).

    Article  ADS  Google Scholar 

  8. Batson, P. E. Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982).

    Article  ADS  Google Scholar 

  9. Ding, Z. J., Li, H. M., Pu, Q. R., Zhang, Z. M. & Shimizu, R. Reflection electron energy loss spectrum of surface plasmon excitation of Ag: A Monte Carlo study. Phys. Rev. B 66, 085411 (2002).

    Article  ADS  Google Scholar 

  10. Savio, L., Vattuone, L. & Rocca, M. Surface plasmon dispersion on sputtered and nanostructured Ag (001). Phys. Rev. B 67, 045406 (2003).

    Article  ADS  Google Scholar 

  11. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007).

    Article  ADS  Google Scholar 

  12. Chu, M. W., Chen, C. H., García de Abajo, F. J., Deng, J. P. & Mou, C. Y. Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime. Phys. Rev. B 77, 245402 (2008).

    Article  ADS  Google Scholar 

  13. Koh, A. L. et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes. ACS Nano 3, 3015–3022 (2009).

    Article  Google Scholar 

  14. Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013).

    Article  ADS  Google Scholar 

  15. Palmer, R. E., Eves, B. J., Festy, F. & Svensson, K. Scanning probe energy loss spectroscopy. Surf. Sci. 502–503, 224–231 (2002).

    Article  ADS  Google Scholar 

  16. Pulisciano, A., Park, S. J. & Palmer, R. E. Surface plasmon excitation of Au and Ag in scanning probe energy loss spectroscopy. Appl. Phys. Lett. 93, 213109 (2008).

    Article  ADS  Google Scholar 

  17. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  ADS  Google Scholar 

  18. Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental. New J. Phys. 12, 123028 (2010).

    Article  ADS  Google Scholar 

  19. Yurtsever, A., Veen, R. M. & Zewail, A. H. Subparticle ultrafast spectrum imaging in 4d electron microscopy. Science 335, 59–64 (2012).

    Article  ADS  Google Scholar 

  20. Camden, J. P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616–12617 (2008).

    Article  Google Scholar 

  21. Cang, H. et al. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature 469, 385–388 (2011).

    Article  ADS  Google Scholar 

  22. Pettinger, B., Ren, B., Picardi, G., Schuster, R. & Ertl, G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 92, 096101 (2004).

    Article  ADS  Google Scholar 

  23. Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006).

    Article  ADS  Google Scholar 

  24. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

    Article  ADS  Google Scholar 

  25. Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nature Photon. 3, 388–394 (2009).

    Article  ADS  Google Scholar 

  26. Dong, Z. C. et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nature Photon. 4, 50–54 (2010).

    Article  ADS  Google Scholar 

  27. Tian, G., Liu, J. C. & Luo, Y. Density-matrix approach for the electroluminescence of molecules in a scanning tunneling microscope. Phys. Rev. Lett. 106, 177401 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Basic Research Program of China (Grant Nos. 2010CB923301 and 2010CB923304), the National Science Foundation of China (Grant Nos. 10404026 and 20925311) and the MOE 211 project.

Author information

Authors and Affiliations

Authors

Contributions

W.J.L. and P.K.Z. contributed equally to this work. X.J.C. and K.Z.X. initiated the study. C.K.X., Y.L. and X.J.C. supervised the project. C.K.X. and X.J.C. designed the experiments. W.J.L., P.K.Z., M.L. and H.J.Z. performed the experiments. C.K.X., W.J.L., P.K.Z. and X.J.C. analysed the data. Y.L. proposed the theoretical model. C.K.X., Y.L. and X.J.C. interpreted the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Yi Luo or Xiang Jun Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Liu, W., Zhang, P. et al. Nonlinear inelastic electron scattering revealed by plasmon-enhanced electron energy-loss spectroscopy. Nature Phys 10, 753–757 (2014). https://doi.org/10.1038/nphys3051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing