Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Environment-assisted quantum control of a solid-state spin via coherent dark states

Abstract

Understanding the interplay between a quantum system and its environment lies at the heart of quantum science and its applications. So far most efforts have focused on circumventing decoherence induced by the environment by either protecting the system from the associated noise1,2,3,4,5 or by manipulating the environment directly6,7,8,9. Recently, parallel efforts using the environment as a resource have emerged, which could enable dissipation-driven quantum computation and coupling of distant quantum bits10,11,12,13,14. Here, we realize the optical control of a semiconductor quantum-dot spin by relying on its interaction with an adiabatically evolving spin environment. The emergence of hyperfine-induced, quasi-static optical selection rules enables the optical generation of coherent spin dark states without an external magnetic field. We show that the phase and amplitude of the lasers implement multi-axis manipulation of the basis spanned by the dark and bright states, enabling control via projection into a spin-superposition state. Our approach can be extended, within the scope of quantum control and feedback15,16, to other systems interacting with an adiabatically evolving environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical spin access via environment-dictated quantization axis.
Figure 2: Environment-assisted coherent population trapping.
Figure 3: Phase dependence of coherent dark states.
Figure 4: Quantum control of an electron spin via state projection.

Similar content being viewed by others

References

  1. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  2. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  3. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2011).

    Article  ADS  Google Scholar 

  4. Weiss, K. M., Elzerman, J. M., Delley, Y. L., Miguel-Sanchez, J. & Imamoglu, A. Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots. Phys. Rev. Lett. 109, 107401 (2012).

    Article  ADS  Google Scholar 

  5. Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. Nature Nanotech. 8, 561–564 (2013).

    Article  ADS  Google Scholar 

  6. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    Article  ADS  Google Scholar 

  7. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

    Article  ADS  Google Scholar 

  8. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903–908 (2009).

    Article  ADS  Google Scholar 

  9. De Lange, G. et al. Controlling the quantum dynamics of a mesoscopic spin bath in diamond. Sci. Rep. 2, 382 (2012).

    Article  Google Scholar 

  10. Plenio, M. B., Huelga, S. F., Beige, A. & Knight, P. L. Cavity loss induced generation of entangled atoms. Phys. Rev. A 59, 2468–2475 (1999).

    Article  ADS  Google Scholar 

  11. Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).

    Article  ADS  Google Scholar 

  12. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009).

    Article  ADS  Google Scholar 

  13. Lin, Y. et al. Dissipative production of a maximally entangled steady state of two quantum bits. Nature 504, 415–418 (2013).

    Article  ADS  Google Scholar 

  14. Fogarty, T. et al. Entangling two defects via a surrounding crystal. Phys. Rev. A 87, 050304 (2013).

    Article  ADS  Google Scholar 

  15. Mabuchi, H. & Khaneja, N. Principles and applications of control on quantum systems. Int. J. Robust Nonlinear Control 15, 647–667 (2005).

    Article  MathSciNet  Google Scholar 

  16. Rabitz, H. Focus on quantum control. New J. Phys. 11, 105030 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. Kim, D. et al. Optical spin initialization and nondestructive measurement in a quantum dot molecule. Phys. Rev. Lett. 101, 236804 (2008).

    Article  ADS  Google Scholar 

  18. Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

    Article  ADS  Google Scholar 

  19. Delteil, A., Gao, W. B., Fallahi, P., Miguel-Sanchez, J. & Imamoglu, A. Observation of quantum jumps of a single quantum dot spin using sub-microsecond single-shot optical readout. Phys. Rev. Lett. 112, 116802 (2014).

    Article  ADS  Google Scholar 

  20. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  21. Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  ADS  Google Scholar 

  22. Urbaszek, B. et al. Nuclear spin physics in quantum dots: An optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    Article  ADS  Google Scholar 

  23. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nature Phys. 9, 570–575 (2013).

    Article  ADS  Google Scholar 

  24. Bernard, J., Fleury, L., Talon, H. & Orrit, M. Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing. J. Chem. Phys. 98, 850–859 (1993).

    Article  ADS  Google Scholar 

  25. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  26. Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008).

    Article  ADS  Google Scholar 

  27. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  ADS  Google Scholar 

  28. Besombes, L., Kheng, K., Marsal, L. & Mariette, H. Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001).

    Article  ADS  Google Scholar 

  29. Fu, K-M. C., Santori, C., Stanley, C., Holland, M. C. & Yamamoto, Y. Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor. Phys. Rev. Lett. 95, 187405 (2005).

    Article  ADS  Google Scholar 

  30. Sladkov, M. et al. Electromagnetically induced transparency with an ensemble of donor-bound electron spins in a semiconductor. Phys. Rev. B 82, 121308 (2010).

    Article  ADS  Google Scholar 

  31. Dreiser, J. et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B 77, 075317 (2008).

    ADS  Google Scholar 

  32. Yale, C. G. et al. All-optical control of a solid state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).

    Article  ADS  Google Scholar 

  33. Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the University of Cambridge, the European Research Council ERC Consolidator Grant agreement no. 617985, EU-FP7 Marie Curie Initial Training Network S3NANO, the NSF-funded Physics Frontier Center at the Joint Quantum Institute, and ARO MURI award no. W911NF0910406. The authors also acknowledge J. C. Barnes, G. Solomon, M. J. Stanley, R. H. J. Stockill and E. Waks for fruitful discussions and technical assistance. J.M.T. thanks the Atomic, Mesoscopic and Optical Physics Group at the Cavendish Laboratory for their fine hospitality during his stays.

Author information

Authors and Affiliations

Authors

Contributions

J.H., C.H.H.S., J.M.T. and M.A. devised the experiments. J.H., C.H.H.S. and C.L.G. performed the experiments and analysed the data. J.H., C.H.H.S., C.L.G., C.M., J.M.T. and M.A. contributed to the discussion of the results and the manuscript preparation. J.M.T. performed the theoretical modelling shown in Fig. 2. J.H. performed theoretical modelling of the data shown in Fig. 1. E.C. and M.H. grew the sample. C.M. processed the devices.

Corresponding authors

Correspondence to Jacob M. Taylor or Mete Atatüre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansom, J., Schulte, C., Le Gall, C. et al. Environment-assisted quantum control of a solid-state spin via coherent dark states. Nature Phys 10, 725–730 (2014). https://doi.org/10.1038/nphys3077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing