Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Avoiding catastrophic failure in correlated networks of networks

Abstract

Networks in nature do not act in isolation, but instead exchange information and depend on one another to function properly1,2,3. Theory has shown that connecting random networks may very easily result in abrupt failures3,4,5,6. This finding reveals an intriguing paradox7,8: if natural systems organize in interconnected networks, how can they be so stable? Here we provide a solution to this conundrum, showing that the stability of a system of networks relies on the relation between the internal structure of a network and its pattern of connections to other networks. Specifically, we demonstrate that if interconnections are provided by network hubs, and the connections between networks are moderately convergent, the system of networks is stable and robust to failure. We test this theoretical prediction on two independent experiments of functional brain networks (in task and resting states), which show that brain networks are connected with a topology that maximizes stability according to the theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modelling degree–degree correlations between interconnected networks.
Figure 2: Stability phase diagram of pc(α, β) for conditional and redundant failure.
Figure 3: Analysis of interconnected functional brain networks.
Figure 4: Stability phase diagram for brain networks.

Similar content being viewed by others

References

  1. Little, R. G. Controlling cascading failure: Understanding the vulnerabilities of interconnected infrastructures. J. Urban Technol. 9, 109–123 (2002).

    Article  Google Scholar 

  2. Rosato, V. Modeling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4, 63–79 (2008).

    Article  Google Scholar 

  3. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    Article  ADS  Google Scholar 

  4. Leicht, E. A. & D’Souza, R. M. Percolation on interacting networks. Preprint at http://arxiv.org/abs/0907.0894 (2009).

  5. Brummitt, C. D., D’Souza, R. M. & Leicht, E. A. Suppressing cascades of load in interdependent networks. Proc. Natl Acad. Sci. USA 109, E680–E689 (2012).

    Article  ADS  Google Scholar 

  6. Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nature Phys. 8, 40–48 (2012).

    Article  ADS  Google Scholar 

  7. Bianconi, G., Dorogovtsev, S. N. & Mendes, J. F. F. Mutually connected component of network of networks. Preprint at http://arxiv.org/abs/1402.0215 (2014).

  8. Bianconi, G. & Dorogovtsev, S. N. Multiple percolation transitions in a configuration model of network of networks. Phys. Rev. E 89, 062814 (2014).

    Article  ADS  Google Scholar 

  9. Dosenbach, N. U. F. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    Article  ADS  Google Scholar 

  10. Vidal, M., Cusick, M. E. & Barabási, A-L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    Article  Google Scholar 

  11. Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001).

    Article  ADS  Google Scholar 

  12. Gallos, L. K., Song, C. & Makse, H. A. Scaling of degree correlations and its influence on diffusion in scale-free networks. Phys. Rev. Lett. 100, 248701 (2008).

    Article  ADS  Google Scholar 

  13. Radicchi, F. Driving interconnected networks to supercriticality. Phys. Rev. X 4, 021014 (2014).

    Google Scholar 

  14. Gallos, L. K., Makse, H. A. & Sigman, M. A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc. Natl Acad. Sci. USA 109, 2825–2830 (2012).

    Article  ADS  Google Scholar 

  15. Moore, C. & Newman, M. E. J. Exact solution of site and bond percolation on small-world networks. Phys. Rev. E 62, 7059–7064 (2000).

    Article  ADS  Google Scholar 

  16. Gao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes. Phys. Rev. E 85, 066134 (2012).

    Article  ADS  Google Scholar 

  17. Bollobás, B. Random Graphs (Academic, 1985).

    MATH  Google Scholar 

  18. Cohen, R., Ben-Avraham, D. & Havlin, S. Percolation critical exponents in scale-free networks. Phys. Rev. E 66, 036113 (2002).

    Article  ADS  Google Scholar 

  19. Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M. & Apkarian, A. V. Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005).

    Article  ADS  Google Scholar 

  20. Bullmore, E. & Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 186–198 (2009).

    Article  Google Scholar 

  21. Sigman, M. et al. Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron 46, 823–835 (2005).

    Article  Google Scholar 

  22. Shehzad, Z., Kelly, A. M. C. & Reiss, P. T. The resting brain: Unconstrained yet reliable. Cereb. Cortex 10, 2209–2229 (2009).

    Article  Google Scholar 

  23. Sigman, M. & Dehaene, S. Brain mechanisms of serial and parallel processing during dual-task performance. J. Neurosci. 28, 7585–7598 (2008).

    Article  Google Scholar 

  24. Russo, R., Herrmann, H. J. & de Arcangelis, L. Brain modularity controls the critical behavior of spontaneous activity. Sci. Rep. 4, 4312 (2014).

    Article  ADS  Google Scholar 

  25. Gallos, L. K., Sigman, M. & Makse, H. A. The conundrum of functional brain networks: small-world efficiency or fractal modularity. Front. Physiol. 3, 123 (2012).

    Article  Google Scholar 

  26. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    Article  ADS  Google Scholar 

  27. Schneider, C. M., Yazdani, N., Araújo, N. A. M., Havlin, S. & Herrmann, H. J. Towards designing robust coupled networks. Sci. Rep. 3, 1969 (2013).

    Article  ADS  Google Scholar 

  28. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).

    Article  ADS  Google Scholar 

  29. Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by NSF-PoLS PHY-1305476 and NIH-NIGMS 1R21GM107641. We thank N. A. M. Araújo, S. Havlin, L. Parra, L. Gallos, A. Salles and T. Bekinschtein for clarifying discussions. Additional financial support was provided by the Brazilian agencies CNPq, CAPES and FUNCAP, the Spanish MINECO BFU2012-39958, CONICET and the James McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition—Scholar Award. The Instituto de Neurociencias is a Severo Ochoa center of excellence.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work presented in this paper.

Corresponding author

Correspondence to Hernán A. Makse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, S., Hu, Y., Babino, A. et al. Avoiding catastrophic failure in correlated networks of networks. Nature Phys 10, 762–767 (2014). https://doi.org/10.1038/nphys3081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3081

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics