Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid sympathetic cooling to Fermi degeneracy on a chip

Abstract

Neutral fermions present new opportunities for testing models of many-body quantum systems, realizing precision atom interferometry, producing ultra-cold molecules, and investigating fundamental forces. However, since they were first observed1, quantum degenerate Fermi gases (DFGs) have continued to be challenging to produce, and have been realized in only a handful of laboratories2,3,4,5,6,7,8,9,10. In this letter, we report the production of a DFG using a simple apparatus based on a microfabricated magnetic trap. Similar approaches applied to Bose–Einstein condensation of 87Rb (refs 11,12) have accelerated evaporative cooling and eliminated the need for multiple vacuum chambers. We demonstrate sympathetic cooling for the first time in a microtrap, and cool 40K to Fermi degeneracy in just six seconds—faster than has been possible in conventional magnetic traps. To understand our sympathetic cooling trajectory, we measure the temperature dependence of the 40 K–87Rb cross-section and observe its Ramsauer–Townsend reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simple apparatus for Fermi degeneracy.
Figure 2: Sympathetic cooling in a chip trap.
Figure 3: Observation of Fermi statistics.
Figure 4: Cross-species thermalization.

Similar content being viewed by others

References

  1. DeMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999).

    Article  Google Scholar 

  2. Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. & Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).

    Article  ADS  Google Scholar 

  3. Schreck, F. et al. Quasipure Bose-Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett. 87, 080403 (2001).

    Article  ADS  Google Scholar 

  4. Granade, S. R., Gehm, M. E., O’Hara, K. M. & Thomas, J. E. All-optical production of a degenerate Fermi gas. Phys. Rev. Lett. 88, 120405 (2002).

    Article  ADS  Google Scholar 

  5. Hadzibabic, Z. et al. Two-species mixture of quantum degenerate Bose and Fermi gases. Phys. Rev. Lett. 88, 160401 (2002).

    Article  ADS  Google Scholar 

  6. Roati, G., Riboli, F., Modugno, G. & Inguscio, M. Fermi–Bose quantum degenerate 40K-87Rb mixture with attractive interaction. Phys. Rev. Lett. 89, 150403 (2002).

    Article  ADS  Google Scholar 

  7. Bartenstein, M. et al. Crossover from a molecular Bose-Einstein condensate to a degenerate Fermi gas. Phys. Rev. Lett. 92, 120401 (2004).

    Article  ADS  Google Scholar 

  8. Köhl, M., Moritz, H., Stöferle, T., Günter, K. & Esslinger, T. Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett. 94, 080403 (2005).

    Article  ADS  Google Scholar 

  9. Silber, C. et al. Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases. Phys. Rev. Lett. 95, 170408 (2005).

    Article  ADS  Google Scholar 

  10. Ospelkaus, C., Ospelkaus, S., Sengstock, K. & Bongs, K. Interaction-driven dynamics of 40K/87Rb Fermi–Bose gas mixtures in the large particle number limit. Phys. Rev. Lett. 96, 020401 (2006).

    Article  ADS  Google Scholar 

  11. Hänsel, W., Hommelhoff, P., Hänsch, T. W. & Reichel, J. Bose-Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001).

    Article  ADS  Google Scholar 

  12. Ott, H., Fortagh, J., Schlotterbeck, G., Grossmann, A. & Zimmermann, C. Bose-Einstein condensation in a surface microtrap. Phys. Rev. Lett. 87, 230401 (2001).

    Article  ADS  Google Scholar 

  13. Groth, S. et al. Atom chips: Fabrication and thermal properties. Appl. Phys. Lett. 85, 2980–2982 (2004).

    Article  ADS  Google Scholar 

  14. Thywissen, J. H., Westervelt, R. M. & Prentiss, M. Quantum point contacts for neutral atoms. Phys. Rev. Lett. 83, 3762–3765 (1999).

    Article  ADS  Google Scholar 

  15. Wang, Y.-J. et al. Atom Michelson interferometer on a chip using a Bose-Einstein condensate. Phys. Rev. Lett. 94, 090405 (2005).

    Article  ADS  Google Scholar 

  16. Aubin, S. et al. Trapping fermionic 40K and bosonic 87Rb in a chip trap. J. Low Temp. Phys. 140, 377–396 (2005).

    Article  ADS  Google Scholar 

  17. Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

    Article  ADS  Google Scholar 

  18. Schreck, F. et al. Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy. Phys. Rev. A 64, 011402 (2001).

    Article  ADS  Google Scholar 

  19. Goldwin, J. et al. Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K . Phys. Rev. A 70, 021601 (2004).

    Article  ADS  Google Scholar 

  20. Ferlaino, F. et al. Feschbach spectroscopy of K-Rb atomic mixture. Phys. Rev. A 73, 040702 (2006).

    Article  ADS  Google Scholar 

  21. van Kempen, E. G. M., Kokkelmans, S. J. J. M. F., Heinzen, J. J. & Verhaar, B. J. Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Phys. Rev. Lett. 88, 93201 (2002).

    Article  ADS  Google Scholar 

  22. Modugno, G. et al. Collapse of a degenerate Fermi gas. Science 297, 2240–2243 (2002).

    Article  ADS  Google Scholar 

  23. Inouye, S. et al. Observation of heteronuclear Feshbach resonances in a mixture of bosons and fermions. Phys. Rev. Lett. 93, 183201 (2004).

    Article  ADS  Google Scholar 

  24. Anderlini, M. et al. Sympathetic cooling and collisional properties of a Rb-Cs mixture. Phys. Rev. A 71, 061401 (2005).

    Article  ADS  Google Scholar 

  25. Mosk, A. et al. Mixture of ultracold lithium and cesium atoms in an optical dipole trap. Appl. Phys. B 73, 791–799 (2001).

    Article  ADS  Google Scholar 

  26. Flambaum, V. V., Gribakin, G. F. & Harabati, C. Analytical calculation of cold-atom scattering. Phys. Rev. A 59, 1998–2005 (1999).

    Article  ADS  Google Scholar 

  27. Townsend, J. S. A Modern Approach to Quantum Mechanics 393 (McGraw-Hill, New York, 1992).

    Google Scholar 

  28. O’Hara, K. M. et al. Observation of a strongly interacting degenerate Fermi gas of atoms. Science 298, 2179–2182 (2002).

    Article  ADS  Google Scholar 

  29. Busch, Th., Anglin, J. R., Cirac, J. I. & Zoller, P. Inhibition of spontaneous emission in Fermi gases. Europhys. Lett. 44, 1–6 (1998).

    Article  ADS  Google Scholar 

  30. DeMarco, B. & Jin, D. S. Exploring a quantum degenerate gas of fermionic atoms. Phys. Rev. A 58, R4267–R4270 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Jin, J. Dalibard, J. Bohm, and D. Guery-Odelin for helpful conversations about scattering theory, and A. Simoni for sending us unpublished 40K–87Rb cross-section calculations. We also thank N. Bigelow, A. Aspect, T. Schumm, and H. Moritz for stimulating conversations, P. Bouyer and R. Nyman for providing a tapered amplifier used in this work, and J. Estève for fabricating the chip used in this work. This work is supported by the NSERC, CFI, OIT, PRO, CRC, and Research Corporation. S.A., L.J.L. and D.M. acknowledge support from NSERC. M.H.T.E. acknowledges support from OGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aubin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubin, S., Myrskog, S., Extavour, M. et al. Rapid sympathetic cooling to Fermi degeneracy on a chip. Nature Phys 2, 384–387 (2006). https://doi.org/10.1038/nphys309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing