Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization

Abstract

Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms1. This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected2. Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation3. In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction4. Here we report a unique combination of experimental techniques5,6,7,8 that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry7,8, equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up9. From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources10. Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tunnel ionization and resulting excitation mechanisms in the Coulomb potential of argon.
Figure 2: Illustration of the ISS technique5,6,7,8 and measured ion yield data.
Figure 3: PPI to Arq+ (q=1–6) as a function of spatially independent laser intensity.
Figure 4: CPI to Arq+ (q=1–6) as a function of spatially independent laser intensity.

Similar content being viewed by others

References

  1. Augst, S., Strickland, D., Meyerhofer, D. D., Chin, S. L. & Eberly, J. H. Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 2212–2215 (1989).

    Article  ADS  Google Scholar 

  2. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  3. Becker, A., Dorner, R. & Moshammer, R. Multiple fragmentation of atoms in femtosecond laser pulses. J. Phys. B 38, S753–S772 (2005).

    Article  ADS  Google Scholar 

  4. Zon, B. A. Tunnelling ionization of atoms with excitation of the core. JETP 91, 899–904 (2000).

    Article  ADS  Google Scholar 

  5. Walker, M. A., Hansch, P. & Van Woerkom, L. D. Intensity-resolved multiphoton ionization: circumventing spatial averaging. Phys. Rev. A 57, R701–R704 (1998).

    Article  ADS  Google Scholar 

  6. El-Zein, A. A. A. et al. A detailed study of multiply-charged ion production within a high intensity laser focus. Phys. Scr. T 92, 119–121 (2001).

    ADS  Google Scholar 

  7. Bryan, W. A. et al. Geometry- and diffraction-independent ionization probabilities in intense laser fields: probing atomic ionization mechanisms with effective intensity matching. Phys. Rev. A 73, 013407 (2006).

    Article  ADS  Google Scholar 

  8. Goodworth, T. R. J., Bryan, W. A., Williams, I. D. & Newell, W. R. Reconstruction of atomic ionization probabilities in intense laser fields. J. Phys. B 38, 3083–3090 (2005).

    Article  ADS  Google Scholar 

  9. Carlson, T. A. Double electron ejection resulting from photo-ionization in the outer-most shell of He, Ne, and Ar, and its relationship to electron correlation. Phys. Rev. 156, 142–149 (1967).

    Article  ADS  Google Scholar 

  10. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  11. Larochelle, S., Talebpour, A. & Chin, S. L. Non-sequential multiple ionization of rare gas atoms in a ti:sapphire laser field. J. Phys. B 31, 1201–1214 (1998).

    Article  ADS  Google Scholar 

  12. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  13. Eichmann, U., Dörr, M., Maeda, H., Becker, W. & Sandner, W. Collective multielectron tunneling ionization in strong fields. Phys. Rev. Lett. 84, 3550–3554 (2000).

    Article  ADS  Google Scholar 

  14. Delone, N. B. & Krainov, V. P. Multiphoton Processes in Atoms 2nd edn (Springer, Berlin, 2000).

    Book  Google Scholar 

  15. Popov, V. S. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Physics–Usp. 47, 855–885 (2004).

    Article  ADS  Google Scholar 

  16. Volkov, D. M. Over a class of solutions of the Dirac equation. Z. Phys. 94, 250–260 (1935).

    Article  ADS  Google Scholar 

  17. Feuerstein, B. et al. Separation of recollision mechanisms in nonsequential strong field double ionization of Ar: the role of excitation tunneling. Phys. Rev. Lett. 87, 043003 (2001).

    Article  ADS  Google Scholar 

  18. Moshammer, R. et al. Correlated two-electron dynamics in strong-field double ionization. Phys. Rev. A 65, 035401 (2002).

    Article  ADS  Google Scholar 

  19. Reider, G. A. XUV attosecond pulses: generation and measurement. J. Phys. D 37, R37–R48 (2004).

    Article  ADS  Google Scholar 

  20. Suresh, M. et al. Multiple ionization of ions and atoms by intense ultrafast laser pulses. Nucl. Instrum. Methods Phys. Res. B 235, 216–220 (2005).

    Article  ADS  Google Scholar 

  21. de Boer, M. P. & Muller, H. G. Observation of large populations in excited states after short-pulse multiphoton ionization. Phys. Rev. Lett. 68, 2747–2750 (1992).

    Article  ADS  Google Scholar 

  22. Jones, R. R., Schumacher, D. W. & Bucksbaum, P. H. Population trapping in Kr and Xe in intense laser fields. Phys. Rev. A 47, 49–52 (1993).

    Article  ADS  Google Scholar 

  23. Wells, E., Ben-Itzhak, I. & Jones, R. R. Ionization of atoms by the spatial gradient of the pondermotive potential in a focused laser beam. Phys. Rev. Lett. 93, 023001 (2004).

    Article  ADS  Google Scholar 

  24. Zon, B. A. Many-electron tunnelling in atoms. JEPT 89, 219–222 (1999).

    Google Scholar 

  25. Kornev, A. S., Tulenko, E. B. & Zon, B. A. Kinetics of multiple ionization of rare-gas atoms in a circularly polarized laser field. Phys. Rev. A 68, 043414 (2003).

    Article  ADS  Google Scholar 

  26. Fittinghoff, D. N., Bolton, P. R., Chang, B. & Kulander, K. C. Observation of nonsequential double ionization of helium with optical tunneling. Phys. Rev. Lett. 69, 2642–2645 (1992).

    Article  ADS  Google Scholar 

  27. Walker, B. et al. Precision measurement of strong field double ionization of helium. Phys. Rev. Lett. 73, 1227–1230 (1994).

    Article  ADS  Google Scholar 

  28. Guo, C., Li, M., Nibarger, J. P. & Gibson, G. N. Single and double ionization of diatomic molecules in strong laser fields. Phys. Rev. A 58, R4271–R4274 (1998).

    Article  ADS  Google Scholar 

  29. Becker, A. & Faisal, F. H. M. S-matrix analysis of coincident measurement of two-electron energy distribution for double ionization of He in an intense laser field. Phys. Rev. Lett. 89, 193003 (2002).

    Article  ADS  Google Scholar 

  30. Levin, J. C. et al. Measurement of the ratio of double-to-single photoionization of helium at 2.8 keV using synchrotron radiation. Phys. Rev. Lett. 67, 968–971 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Engineering and Physical Sciences Research Council (EPSRC), UK. Research studentships are acknowledged by J.W., E.M.L.E. and S.L.S. (EPSRC), J.M. (DEL) and M.S. (IRCEP at QUB). The authors gratefully acknowledge A. S. Kornev and B. A. Zon from Voronezh State University, Russia for fruitful discussions, suggestions and electronically communicating their theoretical data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. A. Bryan, I. D. Williams or W. R. Newell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryan, W., Stebbings, S., McKenna, J. et al. Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization. Nature Phys 2, 379–383 (2006). https://doi.org/10.1038/nphys310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing