Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor

Abstract

Methods to generate spin-polarized electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices1. This is generally accepted to require breaking global structural inversion symmetry1,2,3,4,5. In contrast, here we report the observation from spin- and angle-resolved photoemission spectroscopy of spin-polarized bulk states in the centrosymmetric transition-metal dichalcogenide WSe2. Mediated by a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localized6, we show how spin splittings up to 0.5 eV result, with a spin texture that is strongly modulated in both real and momentum space. Through this, our study provides direct experimental evidence for a putative locking of the spin with the layer and valley pseudospins in transition-metal dichalcogenides7,8, of key importance for using these compounds in proposed valleytronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bulk electronic structure of WSe2.
Figure 2: Observation of spin-polarized bulk bands in an inversion-symmetric host.
Figure 3: Evolution of spin texture along .
Figure 4: Momentum-dependent suppression of layer-resolved spin polarization.

Similar content being viewed by others

References

  1. Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    Article  ADS  Google Scholar 

  2. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  ADS  Google Scholar 

  3. Bahramy, M. et al. Emergent quantum confinement at topological insulator surfaces. Nature Commun. 3, 1159 (2012).

    Article  ADS  Google Scholar 

  4. Murakawa, H. et al. Detection of Berry’s phase in a bulk Rashba semiconductor. Science 342, 1490–1493 (2013).

    Article  ADS  Google Scholar 

  5. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  ADS  Google Scholar 

  6. Zhang, X., Liu, Q., Luo, J. W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nature Phys. 10, 387–393 (2014).

    Article  ADS  Google Scholar 

  7. Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nature Commun. 4, 2053 (2013).

    Article  ADS  Google Scholar 

  8. Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2 . Nature Phys. 10, 130–134 (2014).

    Article  ADS  Google Scholar 

  9. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  10. Das, T. & Balatsky, A. V. Engineering three-dimensional topological insulators in Rashba-type spin–orbit coupled heterostructures. Nature Commun. 4, 1972 (2013).

    Article  ADS  Google Scholar 

  11. Zhou, J. J., Feng, W., Zhang, Y., Yang, S. A. & Yao, Y. Engineering topological surface states and giant Rashba spin splitting in BiTeI/Bi2Te3 heterostructures. Sci. Rep. 4, 3841 (2014).

    Article  Google Scholar 

  12. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    ADS  Google Scholar 

  13. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  ADS  Google Scholar 

  14. Ast, C. R. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).

    Article  ADS  Google Scholar 

  15. King, P. D. C. et al. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3 . Phys. Rev. Lett. 107, 096802 (2011).

    Article  ADS  Google Scholar 

  16. King, P. D. C. et al. Quasiparticle dynamics and spin–orbital texture of the SrTiO3 two-dimensional electron gas. Nature Commun. 5, 3414 (2014).

    Article  ADS  Google Scholar 

  17. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  ADS  Google Scholar 

  18. Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nature Mater. 10, 521–526 (2011).

    Article  ADS  Google Scholar 

  19. Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  20. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    ADS  Google Scholar 

  21. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  22. Finteis, T. et al. Occupied and unoccupied electronic band structure of WSe2 . Phys. Rev. B 55, 10400–10411 (1997).

    Article  ADS  Google Scholar 

  23. Zhu, Z-H. et al. Layer-by-layer entangled spin–orbital texture of the topological surface state in Bi2Se3 . Phys. Rev. Lett. 110, 216401 (2013).

    Article  ADS  Google Scholar 

  24. Zhu, Z-H. et al. Photoelectron spin–polarization control in the topological insulator Bi2Se3 . Phys. Rev. Lett. 112, 076802 (2014).

    Article  ADS  Google Scholar 

  25. Bihlmayer, G. et al. Enhanced Rashba spin–orbit splitting in Bi/Ag(111) and Pb/Ag(111) surface alloys from first principles. Phys. Rev. B 75, 195414 (2007).

    Article  ADS  Google Scholar 

  26. Yuan, H. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013).

    Article  ADS  Google Scholar 

  27. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    Article  ADS  Google Scholar 

  28. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article  ADS  Google Scholar 

  29. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    Article  ADS  Google Scholar 

  30. Berntsen, M. H. et al. A spin- and angle-resolving photoelectron spectrometer. Rev. Sci. Instrum. 81, 035104 (2010).

    Article  ADS  Google Scholar 

  31. Blaha, P. et al. WIEN2K package, Version 10.1 (2010); http://www.wien2k.at

  32. Souza, I. et al. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).

    Article  ADS  Google Scholar 

  33. Mostofi, A. A. et al. Wannier90: A tool for obtaining maximally localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  ADS  Google Scholar 

  34. Kuneš, J. et al. WIEN2WANNIER: From linearized augmented plane waves to maximally localized Wannier functions. Comput. Phys. Commun. 181, 1888–1895 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Engineering and Physical Sciences Research Council, UK, the VILLUM foundation, the Calipso program, TRF-SUT Grant RSA5680052 and NANOTEC, Thailand through the CoE Network. P.D.C.K. acknowledges support from the Royal Society through a University Research Fellowship. M.S.B. was supported by a Grant-in-Aid for Scientific Research (S) (No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The experiments at the MAX IV Laboratory were made possible through funding from the Swedish Research Council and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.M.R., F.M., M.D., M.M., L.B., C.G., W.M., J.W.W. and P.D.C.K. measured the experimental data. J.M.R., F.M., J.W.W. and P.D.C.K. analysed the data. M.S.B. performed the electronic structure calculations. T.T. grew the samples. M.L. and T.B. maintained the spin-ARPES end stations and M.H. and T.K.K. maintained the ARPES end stations, respectively, and provided experimental support. P.D.C.K., J.W.W., M.S.B., P.H. and H.T. provided the project infrastructure. All authors discussed the results and their interpretation. P.D.C.K. and J.M.R. wrote the manuscript with input and discussion from all co-authors. P.D.C.K. was responsible for overall project planning and direction.

Corresponding author

Correspondence to P. D. C. King.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3048 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riley, J., Mazzola, F., Dendzik, M. et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nature Phys 10, 835–839 (2014). https://doi.org/10.1038/nphys3105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing