Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption

Abstract

The ability to drive a system with an external input is a fundamental aspect of light–matter interaction. The key concept in many photonic applications is the ‘critical coupling’ condition1,2: at criticality, all the energy fed to the system is dissipated within the system itself. Although this idea was crucial to enhance the efficiency of many devices, it was never considered in the context of systems operating in a non-perturbative regime. In this so-called strong-coupling regime, the matter and light degrees of freedom are mixed into dressed states, leading to new eigenstates called polaritons3,4,5,6,7,8,9,10. Here we demonstrate that the strong-coupling regime and the critical coupling condition can coexist; in such a strong critical coupling situation, all the incoming energy is converted into polaritons. A general semiclassical theory reveals that such a situation corresponds to a special curve in the phase diagram of the coupled light–matter oscillators. In the case of a system with two radiating ports, the phenomenology shown is that of coherent perfect absorption (CPA; refs 11, 12), which is then naturally understood in the framework of critical coupling. Most importantly, we experimentally verify polaritonic CPA in a semiconductor-based intersubband-polariton photonic crystal resonator. This result opens new avenues in polariton physics, making it possible to control the pumping efficiency of a system independent of the energy exchange rate between the electromagnetic field and the material transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupled oscillator model, strong/weak critical coupling, and polaritonic CPA.
Figure 2: Experimental set-up, sample details and single-beam spectra.
Figure 3: Modulation of output intensity on double-beam excitation and polariton CPA.

Similar content being viewed by others

References

  1. Haus, H. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

    Google Scholar 

  2. Yariv, A. & Yeh, P. Photonics—Optical Electronics in Modern Communications (Oxford Univ. Press, 2007).

    Google Scholar 

  3. Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M. & Haroche, S. Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance. Phys. Rev. Lett. 51, 1175–1178 (1983).

    Article  ADS  Google Scholar 

  4. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  Google Scholar 

  5. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  6. Dini, D., Köhler, R., Tredicucci, A., Biasiol, G. & Sorba, L. Microcavity polariton splitting of intersubband transitions. Phys. Rev. Lett. 90, 116401 (2003).

    Article  ADS  Google Scholar 

  7. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  8. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  9. Peter, E. et al. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    Article  ADS  Google Scholar 

  10. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  ADS  Google Scholar 

  11. Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: Time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    Article  ADS  Google Scholar 

  12. Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

    Article  ADS  Google Scholar 

  13. Yu, Z., Raman, A. & Fan, S. Thermodynamic upper bound on broadband light coupling with photonic structures. Phys. Rev. Lett. 109, 173901 (2012).

    Article  ADS  Google Scholar 

  14. Ghebrebrhan, M. et al. Tailoring thermal emission via Q matching of photonic crystal resonances. Phys. Rev. A 83, 033810 (2011).

    Article  ADS  Google Scholar 

  15. Kimble, H. J. in Cavity Quantum Electrodynamics (ed Berman, P. R.) 203–266 (Academic, 1994).

    Google Scholar 

  16. Andreani, L. C., Panzarini, G. & Gérard, J-M. Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev. B 60, 13276–13279 (1999).

    Article  ADS  Google Scholar 

  17. Srinivasan, K. & Painter, O. Mode coupling and cavity–quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. A 75, 023814 (2007).

    Article  ADS  Google Scholar 

  18. Auffeves-Garnier, A., Simon, C., Gérard, J-M. & Poizat, J-P. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 75, 053823 (2007).

    Article  ADS  Google Scholar 

  19. Shen, J-T. & Fan, S. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009).

    Article  ADS  Google Scholar 

  20. Shen, J-T. & Fan, S. Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. Phys. Rev. A 79, 023838 (2009).

    Article  ADS  Google Scholar 

  21. Shen, J-T. & Fan, S. Quantum critical coupling conditions for zero single-photon transmission through a coupled atom-resonator-waveguide system. Phys. Rev. A 82, 021802(R) (2010).

    Article  ADS  Google Scholar 

  22. Dietze, D., Unterrainer, K. & Darmo, J. Role of geometry for strong coupling in active terahertz metamaterials. Phys. Rev. B 87, 075324 (2013).

    Article  ADS  Google Scholar 

  23. Savona, V., Andreani, L. C., Schwendimann, P. & Quattropani, A. Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Commun. 93, 733–739 (1995).

    Article  ADS  Google Scholar 

  24. De Liberato, S. & Ciuti, C. Stimulated scattering and lasing of intersubband cavity polaritons. Phys. Rev. Lett. 102, 136403 (2009).

    Article  ADS  Google Scholar 

  25. De Liberato, S., Ciuti, C. & Phillips, C. C. Terahertz lasing from intersubband polariton–polariton scattering in asymmetric quantum wells. Phys. Rev. B 87, 241304(R) (2013).

    Article  ADS  Google Scholar 

  26. Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    Article  ADS  Google Scholar 

  27. Zanotto, S., Degl’Innocenti, R., Sorba, L., Tredicucci, A. & Biasiol, G. Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallo-dielectric photonic crystal slabs. Phys. Rev. B 85, 035307 (2012).

    Article  ADS  Google Scholar 

  28. Chutinan, A. & John, S. Light trapping and absorption optimization in certain thin-film photonic crystal architectures. Phys. Rev. A 78, 023825 (2008).

    Article  ADS  Google Scholar 

  29. Auffeves, A. et al. Controlling the dynamics of a coupled atom-cavity system by pure dephasing. Phys. Rev. B 81, 245419 (2010).

    Article  ADS  Google Scholar 

  30. Degl’Innocenti, R., Zanotto, S., Tredicucci, A., Biasiol, G. & Sorba, L. One-dimensional surface-plasmon gratings for the excitation of intersubband polaritons in suspended membranes. Solid State Commun. 151, 1725–1727 (2011).

    Article  ADS  Google Scholar 

  31. Manceau, J. M., Zanotto, S., Sagnes, I., Beaudoin, G. & Colombelli, R. Optical critical coupling into highly confining metal–insulator–metal resonators. Appl. Phys. Lett. 103, 091110 (2013).

    Article  ADS  Google Scholar 

  32. Barnett, S. M., Jeffers, J., Gatti, A. & Loudon, R. Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134–2145 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Scamarcio and M. Liscidini for several fruitful interactions and discussions, E. Zanotto for providing us the loudspeaker actuator, and V. Spagnolo for valuable support with the laser source. This work was supported in part by the Italian Ministry for Economic Development through the Teragraph project and by the European Research Council through the Advanced Grant SoulMan. R.C. acknowledges partial support from the ERC GEM grant (Grant Agreement No. 306661).

Author information

Authors and Affiliations

Authors

Contributions

S.Z., F.P.M. and F.B. performed the experiment, G.B. grew the sample, S.Z., F.P.M., F.B., L.B., R.C. and A.T. analysed the data, S.Z., G.B., L.B., M.S.V., L.S., R.C. and A.T. devised the experiment, L.S., R.C. and A.T. coordinated the project. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Alessandro Tredicucci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanotto, S., Mezzapesa, F., Bianco, F. et al. Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nature Phys 10, 830–834 (2014). https://doi.org/10.1038/nphys3106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing