Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2

Abstract

Superconductivity is a quantum phenomenon arising, in its simplest form, from the pairing of fermions with opposite spin into a state with zero net momentum. Whether superconductivity can occur in fermionic systems with an unequal number of two species distinguished by spin or flavour presents an important open question in condensed-matter physics or quantum chromodynamics1. In condensed matter the imbalance between spin-up and spin-down electrons that form the Cooper pairs is induced by the magnetic field. Such an imbalanced system can lead to exotic superconductivity in which pairs acquire finite momentum2,3. This momentum leads to a spatially inhomogeneous state consisting of periodically alternating ‘normal’ and ‘superconducting’ regions. Here, we establish that the hallmark of this state is the appearance of spatially localized and spin-polarized quasiparticles forming the so-called Andreev bound states (ABS). These are detected through our nuclear magnetic resonance (NMR) measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (H,T) phase diagram of κ-(BEDT-TTF)2Cu(NCS)2.
Figure 2: NMR relaxation rate in the normal and superconducting states.
Figure 3: Enhancement of the NMR relaxation rate in the FFLO state.
Figure 4: Field dependence of the electronic spin polarization and NMR relaxation rate at low temperatures.
Figure 5: Schematic of the properties of the modulated superconductivity.

Similar content being viewed by others

References

  1. Casalbuoni, R. & Nardulli, G. Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 76, 263–320 (2004).

    Article  ADS  Google Scholar 

  2. Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A564 (1964).

    Article  ADS  Google Scholar 

  3. Larkin, A. I. & Ovchinnikov, Y. N. Inhomogeneous state of superconductors. Sov. Phys. JETP 20, 762–769 (1965).

    MathSciNet  Google Scholar 

  4. Maki, K. Effect of Pauli paramagnetism on magnetic properties of high-field superconductors. Phys. Rev. 148, 362–369 (1966).

    Article  ADS  Google Scholar 

  5. Gruenberg, L. & Gunther, L. Fulde–Ferrell effects in Type-II superconductors. Phys. Rev. Lett. 16, 996–998 (1966).

    Article  ADS  Google Scholar 

  6. Loh, Y. L. & Trivedi, N. Detecting the elusive Larkin–Ovchinnikov modulated superfluid phases for imbalanced Fermi gases in optical lattices. Phys. Rev. Lett. 104, 165302 (2010).

    Article  ADS  Google Scholar 

  7. Loh, Y. L., Trivedi, N., Xiong, Y. M., Adams, P. W. & Catelani, G. Origin of excess low-energy states in a disordered superconductor in a Zeeman field. Phys. Rev. Lett. 107, 067003 (2011).

    Article  ADS  Google Scholar 

  8. Bianchi, A., Movshovich, R., Capan, C., Pagliuso, P. G. & Sarrao, J. L. Possible Fulde–Ferrell–Larkin–Ovchinnikov superconducting state in CeCoIn5 . Phys. Rev. Lett. 91, 187004 (2003).

    Article  ADS  Google Scholar 

  9. Koutroulakis, G. et al. Field evolution of coexisting superconducting and magnetic orders in CeCoIn5 . Phys. Rev. Lett. 104, 087001 (2010).

    Article  ADS  Google Scholar 

  10. Singleton, J. et al. Observation of the Fulde–Ferrell–Larkin–Ovchinnikov state in the quasi-two-dimensional organic superconductor κ-(BEDT)2(CuSCN)2(BEDT-TTF ≡ bis(ethylene-dithio)tetrathiafulvalene). J. Phys. Condens. Matter 12, L641–L648 (2000).

    Article  Google Scholar 

  11. Lortz, R. et al. Calorimetric evidence for a Fulde–Ferrell–Larkin–Ovchinnikov superconducting state in the layered organic superconductor κ-(BEDT-TTF)2(CuNCS)2 . Phys. Rev. Lett. 99, 187002 (2007).

    Article  ADS  Google Scholar 

  12. Bergk, B. et al. Magnetic torque evidence for the Fulde–Ferrell–Larkin–Ovchinnikov state in the layered organic superconductor κ-(BEDT-TTF)2(CuNCS)2 . Phys. Rev. B 83, 064506 (2011).

    Article  ADS  Google Scholar 

  13. Uji, S. et al. Vortex dynamics and the Fulde–Ferrell–Larkin–Ovchinnikov state in a magnetic-field-induced organic superconductor. Phys. Rev. Lett. 97, 157001 (2006).

    Article  ADS  Google Scholar 

  14. Vorontsov, A. B., Sauls, J. A. & Graf, M. J. Phase diagram and spectroscopy of Fulde–Ferrell–Larkin–Ovchinnikov states of two-dimensional d-wave superconductors. Phys. Rev. B 72, 184501 (2005).

    Article  ADS  Google Scholar 

  15. Agosta, C. C. et al. Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to κ-(BEDT-TTF)2(CuNCS)2: Strong evidence of a FFLO state. Phys. Rev. B 85, 214514 (2012).

    Article  ADS  Google Scholar 

  16. Wright, J. A. et al. Zeeman-driven phase transition within the superconducting state of κ-(BEDT-TTF)2(CuNCS)2 . Phys. Rev. Lett. 107, 087002 (2011).

    Article  ADS  Google Scholar 

  17. Kawamoto, A., Miyagawa, K., Nakazawa, Y. & Kanoda, K. 13C NMR study of layered organic superconductors based on BEDT-TTF molecules. Phys. Rev. Lett. 74, 3455–3458 (1995).

    Article  ADS  Google Scholar 

  18. Mayaffre, H., Wzietek, P., Jérome, D., Lenoir, C. & Batail, P. Superconducting state of κ-(ET)2Cu[N(CN)2]Br. Studied by 13C NMR: Evidence for vortex-core-induced nuclear relaxation and unconventional pairing. Phys. Rev. Lett. 75, 4122–4125 (1995).

    Article  ADS  Google Scholar 

  19. Mayaffre, H., Wzietek, P., Lenoir, C., Jérome, D. & Batail, P. 13C NMR study of a quasi-two-dimensional organic superconductor κ-(ET)2Cu[N(CN)2]Br. Europhys. Lett. 28, 205–210 (1994).

    Article  ADS  Google Scholar 

  20. De Soto, S. M. et al. 13C NMR studies of the normal and superconducting states of the organic superconductor κ-(ET)2Cu[N(CN)2]Br. Phys. Rev. B 52, 10364–10368 (1995).

    Article  ADS  Google Scholar 

  21. Abragam, A. Principles of Nuclear Magnetism (Oxford Univ. Press, 1999).

    Google Scholar 

  22. Clem, J. R. & Coffey, M. W. Viscous flux motion in a Josephson-coupled layer model of high-Tc superconductors. Phys. Rev. B 42, 6209–6216 (1990).

    Article  ADS  Google Scholar 

  23. De Soto, S. M., Slichter, C. P., Wang, H. H., Geiser, U. & Williams, J. M. Evidence for the role of fluxoids in enhancing NMR spin–lattice relaxation and implications for intrinsic pinning of the flux lattice in organic superconductors. Phys. Rev. Lett. 70, 2956–2959 (1993).

    Article  ADS  Google Scholar 

  24. Mansky, P. A., Chaikin, P. M. & Haddon, R. C. Vortex lock-in state in a layered superconductor. Phys. Rev. Lett. 70, 1323–1326 (1993).

    Article  ADS  Google Scholar 

  25. Mansky, P. A., Chaikin, P. M. & Haddon, R. C. Viscous flux motion in a Josephson-coupled layer model of high-Tc superconductors. Phys. Rev. B 50, 15929–15944 (1994).

    Article  ADS  Google Scholar 

  26. Won, H. et al. Upper critical field and Fulde–Ferrell–Larkin–Ovchinnikov state in CeCoIn5 . Phys. Rev. B 69, 180504(R) (2004).

    Article  ADS  Google Scholar 

  27. Wang, Q., Chen, H-Y., Hu, C-R. & Ting, C. S. Local tunneling spectroscopy as a signature of the Fulde–Ferrell–Larkin–Ovchinnikov State in s- and d-wave superconductors. Phys. Rev. Lett. 96, 117006 (2006).

    Article  ADS  Google Scholar 

  28. Yanase, Y. & Sigrist, M. Antiferromagnetic order and π-triplet pairing in the Fulde–Ferrell–Larkin–Ovchinnikov state. J. Phys. Soc. Jpn 78, 114715 (2009).

    Article  ADS  Google Scholar 

  29. Cui, Q., Hu, C-R., Wei, J. Y. T. & Yang, K. Spectroscopic signatures of the Larkin–Ovchinnikov state in the conductance characteristics of a normal-metal/superconductor junction. Phys. Rev. B 85, 014503 (2012).

    Article  ADS  Google Scholar 

  30. Urayama, H. et al. A new ambient pressure organic superconductor based on BEDT-TTF with T C higher than 10 K (T C = 10.4 K). Chem. Lett. 17, 55–58 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Vorontsov, Y. Yanase and M. Sigrist for illuminating discussions, and I. Sheikin for providing raw data for the phase diagram. This research is supported by funds from the French ANR grant 06-BLAN-0111, the EuroMagNET II network under EU Contract No. 228043, the visiting faculty program of Université Joseph Fourier (V.F.M.), and ADVANCE HRD-0548311 (V.F.M.).

Author information

Authors and Affiliations

Authors

Contributions

K.M. and K.K. prepared the samples. H.M., S.K., K.M. and V.F.M. performed the experiments. S.K. and M.H. developed and operated the high-field NMR facility. H.M. created software for the spectrometers. H.M. and V.F.M. analysed the data. C.B. provided conceptual advice and contributed to the planning of the project. H.M., C.B., M.H. and V.F.M. developed the data interpretation. V.F.M. wrote the paper and supervised the project. All authors discussed the results and commented on and edited the manuscript.

Corresponding author

Correspondence to V. F. Mitrović.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayaffre, H., Krämer, S., Horvatić, M. et al. Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2. Nature Phys 10, 928–932 (2014). https://doi.org/10.1038/nphys3121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing