Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential

Abstract

Long-range correlations in two-dimensional (2D) systems are significantly altered by disorder potentials. Theory has predicted the existence of disorder-induced phenomena, such as Anderson localization1 or the emergence of a Bose glass2. More recently, it has been shown that when disorder breaks 2D continuous symmetry, long-range correlations can be enhanced3. Experimentally, developments in quantum gases have allowed the observation of the effects of competition between interaction and disorder4,5. However, experiments exploring the effect of symmetry-breaking disorder are lacking. Here, we create a 2D vortex lattice at 0.1 K in a superconducting thin film with a well-defined 1D thickness modulation—the symmetry-breaking disorder—and track the field-induced modification using scanning tunnelling microscopy. We find that the 1D modulation becomes incommensurate with the vortex lattice and drives an order–disorder transition, behaving as a scale-invariant disorder potential. We show that the transition occurs in two steps and is mediated by the proliferation of topological defects. The resulting critical exponents determining the loss of positional and orientational order are far above theoretical expectations for scale-invariant disorder6,7,8 and follow instead the critical behaviour describing dislocation unbinding melting9,10. Our data show that randomness disorders a 2D crystal, with enhanced long-range correlations due to the presence of a 1D modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unlocking of the 2D vortex lattice on a linear potential.
Figure 2: Order–disorder transition in the 2D vortex lattice at 0.1 K.
Figure 3: Correlation functions and critical exponents.

Similar content being viewed by others

References

  1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  2. Fisher, M., Weichman, P., Grinstein, G. & Fisher, D. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  ADS  Google Scholar 

  3. Wehr, J., Niederberger, A., Sanchez-Palencia, L. & Lewenstein, M. Disorder versus the Mermin–Wagner–Hohenberg effect: From classical spin systems to ultracold atomic gases. Phys. Rev. B 74, 224448 (2006).

    Article  ADS  Google Scholar 

  4. Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).

    Article  ADS  Google Scholar 

  5. Sanchez-Palencia, L. & Lewenstein, M. Disordered quantum gases under control. Nature Phys. 6, 87–95 (2010).

    Article  ADS  Google Scholar 

  6. Nattermann, T., Scheidl, S., Korshunov, S. & Li, M. Absence of reentrance in the two-dimensional XY-model with random phase shift. J. Phys. 5, 565–572 (1995).

    Google Scholar 

  7. Cha, M-C. & Fertig, H. A. Disorder-induced phase transition in two-dimensional crystals. Phys. Rev. Lett. 74, 4867–4870 (1995).

    Article  ADS  Google Scholar 

  8. Nelson, D. R. & Halperin, B. I. Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457–2484 (1979).

    Article  ADS  Google Scholar 

  9. Berezinskii, V. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum Systems. Sov. Phys. JETP 34, 610–616 (1972).

    ADS  Google Scholar 

  10. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  ADS  Google Scholar 

  11. Carpentier, D. & Doussal, P. L. Melting of two-dimensional solids on disordered substrates. Phys. Rev. Lett. 81, 1881–1884 (1998).

    Article  ADS  Google Scholar 

  12. Nattermann, T. Scaling approach to pinning: Charge density waves and giant flux creep in superconductors. Phys. Rev. Lett. 64, 2454–2457 (1990).

    Article  ADS  Google Scholar 

  13. Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987).

    Article  ADS  Google Scholar 

  14. Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968).

    Article  ADS  Google Scholar 

  15. Hohenberg, P. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–366 (1967).

    Article  ADS  Google Scholar 

  16. Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  17. Young, A. P. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 19, 1855–1866 (1979).

    Article  ADS  Google Scholar 

  18. Nelson, D. R. Reentrant melting in solid films with quenched random impurities. Phys. Rev. B 27, 2902–2914 (1983).

    Article  ADS  Google Scholar 

  19. LeDoussal, P. & Giamarchi, T. Dislocation and Bragg glasses in two dimensions. Physica C C331, 233–240 (2000).

    Article  ADS  Google Scholar 

  20. Guillamon, I. et al. Direct observation of stress accumulation and relaxation in small bundles of superconducting vortices in tungsten thin films. Phys. Rev. Lett. 106, 077001 (2011).

    Article  ADS  Google Scholar 

  21. Korshunov, S. & Nattermann, T. Phase diagram of a Josephson junction array with positional disorder. Physica B 222, 280–286 (1996).

    Article  ADS  Google Scholar 

  22. SadrLahijany, M., Ray, P. & Stanley, H. Dispersity-driven melting transition in two-dimensional solids. Phys. Rev. Lett. 79, 3206–3209 (1997).

    Article  ADS  Google Scholar 

  23. Abanin, D., Lee, P. & Levitov, L. Randomness-induced XY ordering in a graphene quantum Hall ferromagnet. Phys. Rev. Lett. 98, 156801 (2007).

    Article  ADS  Google Scholar 

  24. Niederberger, A. et al. Disorder-induced order in two-component Bose–Einstein condensates. Phys. Rev. Lett. 100, 030403 (2008).

    Article  ADS  Google Scholar 

  25. Radzihovsky, L., Frey, E. & Nelson, D. Novel phases and reentrant melting of two-dimensional colloidal crystals. Phys. Rev. E 63, 031503 (2001).

    Article  ADS  Google Scholar 

  26. Martinoli, P. Static and dynamic interaction of superconducting vortices with a periodic pinning potential. Phys. Rev. B 17, 1175–1194 (1978).

    Article  ADS  Google Scholar 

  27. Giamarchi, T. & LeDoussal, P. Elastic theory of flux lattices in the presence of weak disorder. Phys. Rev. B 52, 1242–1270 (1995).

    Article  ADS  Google Scholar 

  28. Zahn, K., Lenke, R. & Maret, G. Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett. 82, 2721–2724 (1999).

    Article  ADS  Google Scholar 

  29. Carpentier, D. & Doussal, P. L. Topological transitions and freezing in XY models and Coulomb gases with quenched disorder: Renormalization via traveling waves. Nucl. Phys. B 588, 565–629 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  30. Herrera-Velarde, S. & von Grünberg, H. H. Disorder-induced vs temperature-induced melting of two-dimensional colloidal crystals. Soft Matter 5, 391–399 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish MINECO (FIS2011-23488, MAT2011-27553-C02, MAT 2012-38318-C03, Consolider Ingenio Molecular Nanoscience CSD2007-00010), the Comunidad de Madrid through program Nanobiomagnet (S2009/MAT-1726) and by the Marie Curie Actions under the project FP7-PEOPLE-2013-CIG-618321 and contract no. FP7-PEOPLE-2010-IEF-273105. We acknowledge the technical support of UAM’s workshop SEGAINVEX.

Author information

Authors and Affiliations

Authors

Contributions

I.G. carried out the experiment, analysis and interpretation of data. I.G. wrote the paper together with H.S. and S.V. Samples were made and characterized by R.C. and J.S. J.M.D.T. and M.R.I. supervised the sample design and fabrication. All authors discussed the manuscript text and contributed to it.

Corresponding author

Correspondence to I. Guillamón.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4176 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 3146 kb)

Supplementary Movie

Supplementary Movie 2 (AVI 3346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillamón, I., Córdoba, R., Sesé, J. et al. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential. Nature Phys 10, 851–856 (2014). https://doi.org/10.1038/nphys3132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing