Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increasing the elastic modulus of graphene by controlled defect creation

Abstract

The extraordinary strength, stiffness1 and lightness of graphene have generated great expectations of its application in flexible electronics and as a mechanical reinforcement agent. However, the presence of lattice defects, unavoidable in sheets obtained by scalable routes, might degrade its mechanical properties2,3. Here we report a systematic study on the elastic modulus and strength of graphene with a controlled density of defects. Counter-intuitively, the in-plane Young’s modulus increases with increasing defect density up to almost twice the initial value for a vacancy content of 0.2%. For a higher density of vacancies, the elastic modulus decreases with defect inclusions. The initial increase in Young’s modulus is explained in terms of a dependence of the elastic coefficients on the momentum of flexural modes predicted for two-dimensional membranes4,5. In contrast, the fracture strength decreases with defect density according to standard fracture continuum models. These quantitative structure–property relationships, measured in atmospheric conditions, are of fundamental and technological relevance and provide guidance for applications in which graphene mechanics represents a disruptive improvement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Set-up and sample geometry.
Figure 2: Characterization of pristine and defective graphene.
Figure 3: Mechanical characterization as a function of defect density.
Figure 4: Thermal fluctuation in 2D membranes.

Similar content being viewed by others

References

  1. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  2. Gomez-Navarro, C., Burghard, M. & Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008).

    Article  ADS  Google Scholar 

  3. Lee, G-H. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340, 1073–1076 (2013).

    Article  ADS  Google Scholar 

  4. Aronovitz, J. A. & Lubensky, T. C. Fluctuations of solid membranes. Phys. Rev. Lett. 60, 2634–2637 (1988).

    Article  ADS  Google Scholar 

  5. Nelson, D., Piran, T. & Weinberg, S. (eds) Statistical Mechanics of Membranes and Surfaces 2nd edn (World Scientific Singapore, 2004).

  6. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  ADS  Google Scholar 

  7. Ruiz-Vargas, C. S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 2259–2263 (2011).

    Article  ADS  Google Scholar 

  8. Fedorov, A. S. et al. DFT investigation of the influence of ordered vacancies on elastic and magnetic properties of graphene and graphene-like SiC and BN structures. Phys. Status Solidi B 249, 2549–2552 (2012).

    Article  ADS  Google Scholar 

  9. Georgantzinos, S. K., Katsareas, D. E. & Anifantis, N. K. Limit load analysis of graphene with pinhole defects: A nonlinear structural mechanics approach. Int. J. Mech. Sci. 55, 85–94 (2012).

    Article  Google Scholar 

  10. Jing, N. et al. Effect of defects on Young’s modulus of graphene sheets: A molecular dynamics simulation. Rsc Adv. 2, 9124–9129 (2012).

    Article  Google Scholar 

  11. Katsnelson, M. I. & Fasolino, A. Graphene as a prototype crystalline membrane. Acc. Chem. Res. 46, 97–105 (2013).

    Article  Google Scholar 

  12. Begley, M. R. & Mackin, T. J. Spherical indentation of freestanding circular thin films in the membrane regime. J. Mech. Phys. Solids 52, 2005–2023 (2004).

    Article  ADS  Google Scholar 

  13. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  ADS  Google Scholar 

  14. Zandiatashbar, A. et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nature Commun. 5, 3186 (2014).

    Article  ADS  Google Scholar 

  15. Krasheninnikov, A. V. & Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. Nature Mater. 6, 723–733 (2007).

    Article  ADS  Google Scholar 

  16. Ugeda, M. M., Brihuega, I., Guinea, F. & Gomez-Rodriguez, J. M. Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 104, 096804 (2010).

    Article  ADS  Google Scholar 

  17. Guryel, S. et al. Effect of structural defects and chemical functionalisation on the intrinsic mechanical properties of graphene. Phys. Chem. Chem. Phys. 15, 659–665 (2013).

    Article  Google Scholar 

  18. Kvashnin, A. G., Sorokin, D. G. & Kvashnin, D. G. The theoretical study of mechanical properties of graphene membranes. Fullerenes Nanotubes Carbon Nanostruct. 18, 497–500 (2010).

    Article  ADS  Google Scholar 

  19. Neek-Amal, M. & Peeters, F. M. Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene. Phys. Rev. B 81, 235437 (2010).

    Article  ADS  Google Scholar 

  20. Katsnelson, M. I. Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  21. Ghosh, S. et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).

    Article  ADS  Google Scholar 

  22. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  ADS  Google Scholar 

  23. Roldan, R., Fasolino, A., Zakharchenko, K. V. & Katsnelson, M. I. Suppression of anharmonicities in crystalline membranes by external strain. Phys. Rev. B 83, 174104 (2011).

    Article  ADS  Google Scholar 

  24. Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).

    Article  Google Scholar 

  25. Vaks, V. G., Katsnelson, M. I., Likhtenstein, A. I., Peschanskikh, G. V. & Trefilov, A. V. Pretransition softening and anomalous pressure-dependence of shear constants in alkali and alkaline-earth metals due to band-structure effects. J. Phys. Condens. Matter 3, 1409–1428 (1991).

    Article  ADS  Google Scholar 

  26. Leenaerts, O., Peelaers, H., Hernandez-Nieves, A. D., Partoens, B. & Peeters, F. M. First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 82, 195436 (2010).

    Article  ADS  Google Scholar 

  27. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  28. Cancado, L. G. et al. Quantifying defects in graphene via Raman sectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article  ADS  Google Scholar 

  29. Eckman, A. et al. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by MAT2013-46753-C2-2-P, Consolider CSD2010-0024, FIS2011-23713 and the European Research Council Advanced Grant, #290846. We acknowledge technical support from A. Aranda, C. Salgado and A. del Campo, and fruitful discussions with M. Jaafar, A. K. Geim, R. Perez, F. Yndurain and J. Soler.

Author information

Authors and Affiliations

Authors

Contributions

C.G-N. and J.G-H. devised the experiments. G.L-P. performed the experiments. G.L-P., C.G-N. and J.G-H. analysed the data. F.P-M. prepared the substrates. C.G-N. and J.G-H. wrote the manuscript. V.P., M.I.K. and F.G. formulated the theoretical model. All authors participated in discussions.

Corresponding author

Correspondence to Cristina Gómez-Navarro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2087 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Polín, G., Gómez-Navarro, C., Parente, V. et al. Increasing the elastic modulus of graphene by controlled defect creation. Nature Phys 11, 26–31 (2015). https://doi.org/10.1038/nphys3183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing