Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct visualization of concerted proton tunnelling in a water nanocluster

Abstract

Proton transfer through hydrogen bonds plays a fundamental role in many physical, chemical and biological processes1,2,3,4,5. Proton dynamics is susceptible to quantum tunnelling, which typically involves many hydrogen bonds simultaneously, leading to correlated many-body tunnelling6,7,8,9. In contrast to the well-studied incoherent single-particle tunnelling, our understanding of many-body tunnelling is still in its infancy. Here we report the real-space observation of concerted proton tunnelling in a cyclic water tetramer using a cryogenic scanning tunnelling microscope. This is achieved by monitoring the reversible interconversion of the hydrogen-bonding chirality of the water tetramer with a chlorine-terminated scanning tunnelling microscope tip. We found that the presence of the Cl anion at the tip apex may either enhance or suppress the concerted tunnelling process, depending on the details of the coupling symmetry between the Cl ion and the protons. Our work opens up the possibility of controlling the quantum states of protons with atomic-scale precision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chirality switching of a H2O tetramer.
Figure 2: Quantitative analysis of the switching rate.
Figure 3: Effect of the tip on the reaction barrier for proton transfer.
Figure 4: Dependence of the switching rates on the lateral position of the tip.

Similar content being viewed by others

References

  1. Kreuer, K. D. Proton conductivity: Materials and applications. Chem. Mater. 8, 610–641 (1996).

    Article  Google Scholar 

  2. Benoit, M., Marx, D. & Parrinello, M. Tunnelling and zero-point motion in high-pressure ice. Nature 392, 258–261 (1998).

    Article  ADS  Google Scholar 

  3. Horiuchi, S. et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789–793 (2010).

    Article  ADS  Google Scholar 

  4. Frank, R. A. W. et al. A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306, 872–876 (2004).

    Article  ADS  Google Scholar 

  5. Masgrau, L. et al. Atomic description of an enzyme reaction dominated by proton tunneling. Science 312, 237–241 (2006).

    Article  ADS  Google Scholar 

  6. Brougham, D. F., Caciuffo, R. & Horsewill, A. J. Coordinated proton tunneling in a cyclic network of four hydrogen bonds in the solid state. Nature 397, 241–243 (1999).

    Article  ADS  Google Scholar 

  7. Bove, L. E., Klotz, S., Paciaroni, A. & Sacchetti, F. Anomalous proton dynamics in ice at low temperature. Phys. Rev. Lett. 103, 165901 (2009).

    Article  ADS  Google Scholar 

  8. Lin, L., Morrone, J. A. & Car, R. Correlated tunneling in hydrogen bonds. J. Stat. Phys. 145, 365–384 (2011).

    Article  ADS  Google Scholar 

  9. Drechsel-Grau, C. & Marx, D. Quantum simulation of collective proton tunneling in hexagonal ice crystals. Phys. Rev. Lett. 112, 148302 (2014).

    Article  ADS  Google Scholar 

  10. Gilli, G. & Gilli, P. The Nature of the Hydrogen Bond (Oxford Univ. Press, 2009).

    Book  Google Scholar 

  11. Garczarek, F. & Gerwert, K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439, 109–112 (2006).

    Article  ADS  Google Scholar 

  12. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  ADS  Google Scholar 

  13. Kumagai, T. et al. H-atom relay reactions in real space. Nature Mater. 11, 167–172 (2012).

    Article  ADS  Google Scholar 

  14. Merte, L. R. et al. Water-mediated proton hopping on an iron oxide surface. Science 336, 889–893 (2012).

    Article  ADS  Google Scholar 

  15. Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nature Nanotech. 7, 41–46 (2012).

    Article  ADS  Google Scholar 

  16. Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nature Chem. 6, 41–46 (2013).

    Article  ADS  Google Scholar 

  17. Lawton, T. J. et al. Visualization of hydrogen bonding and associated chirality in methanol hexamers. Phys. Rev. Lett. 107, 256101 (2011).

    Article  ADS  Google Scholar 

  18. Zhang, J. et al. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013).

    Article  ADS  Google Scholar 

  19. Chiang, C. L. et al. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344, 855–888 (2014).

    Article  ADS  Google Scholar 

  20. Guo, J. et al. Real-space imaging of interfacial water with submolecular resolution. Nature Mater. 13, 184–189 (2014).

    Article  ADS  Google Scholar 

  21. Ho, W. Single-molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).

    Article  ADS  Google Scholar 

  22. Gawronski, H. et al. Manipulation and control of hydrogen bond dynamics in absorbed ice nanoclusters. Phys. Rev. Lett. 101, 136102 (2008).

    Article  ADS  Google Scholar 

  23. Lauhon, L. J. & Ho, W. Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope. Phys. Rev. Lett. 85, 4566–4569 (2000).

    Article  ADS  Google Scholar 

  24. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

    Article  ADS  Google Scholar 

  25. Horsewill, A. J. Quantum tunnelling in the hydrogen bond. Prog. Nucl. Magn. Reson. Spectrosc. 52, 170–196 (2008).

    Article  Google Scholar 

  26. Drechsel-Grau, C. & Marx, D. Exceptional isotopic-substitution effect: Breakdown of collective proton tunneling in hexagonal ice due to partial deuteration. Angew. Chem. 126, 11117–11120 (2014).

    Article  Google Scholar 

  27. Ding, Y., Hassanali, A. A. & Parrinello, M. Anomalous water diffusion in salt solutions. Proc. Natl Acad. Sci. USA 111, 3310–3315 (2014).

    Article  ADS  Google Scholar 

  28. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  Google Scholar 

  29. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  30. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  ADS  Google Scholar 

  31. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Programs of China under Grant Nos 2012CB921303, 2012CB921304 and 2013CB934600, the National Science Foundation of China under Grant Nos 11104004, 11274012, 91021007, 91321309, 11290162/A040106 and 11275008. Y.J. acknowledges support from the National Program for Support of Top-notch Young Professionals. We are grateful for the computational resources provided by the supercomputer TianHe-1A in Tianjin, China. We thank Z. H. Cheng, A. H. Castro Neto, M. F. Crommie and A. Hodgson for enlightening discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.J. and E-G.W. designed and supervised the project. X.M., J.G. and Y.J. performed the STM measurements. J.C. and X-Z.L. carried out the DFT calculations. J.P., J.G., X.M., Z.W., and Y.J. analysed the data. J-R.S. contributed to the interpretation of the data. Y.J. and X.M. wrote the manuscript with J.G., J.P., J.C., X-Z.L. and E-G.W. The manuscript reflects the contributions of all authors.

Corresponding authors

Correspondence to En-Ge Wang or Ying Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 11937 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 1451 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Guo, J., Peng, J. et al. Direct visualization of concerted proton tunnelling in a water nanocluster. Nature Phys 11, 235–239 (2015). https://doi.org/10.1038/nphys3225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing