Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geometric phase and band inversion in periodic acoustic systems

Abstract

The geometric-phase concept has far-reaching implications in many branches of physics1,2,3,4,5,6,7,8,9,10,11,12,13,14. The geometric phase that specifically characterizes the topological property of bulk bands in one-dimensional periodic systems is known as the Zak phase15,16. Recently, it has been found that topological notions can also characterize the topological phase of mechanical isostatic lattices13. Here, we present a theoretical framework and two experimental methods to determine the Zak phase in a periodic acoustic system. We constructed a phononic crystal with a topological transition point in the acoustic band structure where the band inverts and the Zak phase in the bulk band changes following a shift in system parameters. As a consequence, the topological characteristics of the bandgap change and interface states form at the boundary separating two phononic crystals having different bandgap topological characteristics. Such acoustic interface states with large sound intensity enhancement are observed at the phononic crystal interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 1D phononic crystal interface system.
Figure 2: Topological transition in 1D PC system.
Figure 3: Topological transition with Zak phase changes.
Figure 4: Reflection phase as a measure of the Zak phase.
Figure 5: Existence of interface states in topologically different PC systems.

Similar content being viewed by others

References

  1. Von Bergmann, J. & von Bergmann, H. Foucault pendulum through basic geometry. Am. J. Phys. 75, 888–892 (2007).

    Article  ADS  Google Scholar 

  2. Xiao, D., Chang, M-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  3. Karplus, R. & Luttinger, J. Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).

    Article  ADS  Google Scholar 

  4. Kohn, W. & Luttinger, J. Quantum theory of electrical transport phenomena. Phys. Rev. 108, 590–611 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  5. Chang, M-C. & Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum. Phys. Rev. Lett. 75, 1348–1351 (1995).

    Article  ADS  Google Scholar 

  6. King-Smith, R. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

    Article  ADS  Google Scholar 

  7. Thonhauser, T., Ceresoli, D., Vanderbilt, D. & Resta, R. Orbital magnetization in periodic insulators. Phys. Rev. Lett. 95, 137205 (2005).

    Article  ADS  Google Scholar 

  8. Thouless, D., Kohmoto, M., Nightingale, M. & Den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  9. Wang, Z., Chong, Y., Joannopoulos, J. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  10. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  11. Rechtsman, M. C. et al. Topological creation and destruction of edge states in photonic graphene. Phys. Rev. Lett. 111, 103901 (2013).

    Article  ADS  Google Scholar 

  12. Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233–239 (2012).

    Article  ADS  Google Scholar 

  13. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nature Phys. 10, 39–45 (2014).

    Article  ADS  Google Scholar 

  14. Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

    Article  ADS  Google Scholar 

  15. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).

    Article  ADS  Google Scholar 

  16. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nature Phys. 9, 795–800 (2013).

    Article  ADS  Google Scholar 

  17. Bradley, C. Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory. J. Acoust. Soc. Am. 96, 1844–1853 (1994).

    Article  ADS  Google Scholar 

  18. Hu, X., Hang, Z., Li, J., Zi, J. & Chan, C. Anomalous Doppler effects in phononic band gaps. Phys. Rev. E 73, 015602 (2006).

    Article  ADS  Google Scholar 

  19. Munday, J., Bennett, C. B. & Robertson, W. Band gaps and defect modes in periodically structured waveguides. J. Acoust. Soc. Am. 112, 1353–1358 (2002).

    Article  ADS  Google Scholar 

  20. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  21. Bernevig, B. A., Hughes, T. L. & Zhang, S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  22. Pankratov, O., Pakhomov, S. & Volkov, B. Supersymmetry in heterojunctions: Band-inverting contact on the basis of Pb1−xSnxTe and Hg1−xCdxTe. Solid State Commun. 61, 93–96 (1987).

    Article  ADS  Google Scholar 

  23. Kohn, W. Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115, 809–821 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  24. Xiao, M., Zhang, Z-Q. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014).

    Google Scholar 

  25. Zak, J. Symmetry criterion for surface states in solids. Phys. Rev. B 32, 2218–2226 (1985).

    Article  ADS  Google Scholar 

  26. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  27. Zeuner, J. M. et al. Probing topological invariants in the bulk of a non-Hermitian optical system. Preprint at http://arxiv.org/abs/1408.2191 (2014).

  28. Longhi, S. Zak phase of photons in optical waveguide lattices. Opt. Lett. 38, 3716–3719 (2013).

    Article  ADS  Google Scholar 

  29. Buckingham, M. J., Berknout, B. V. & Glegg, S. A. Imaging the ocean with ambient noise. Nature 356, 327–329 (1992).

    Article  ADS  Google Scholar 

  30. Fatemi, M. & Greenleaf, J. F. Ultrasound-stimulated vibro-acoustic spectrography. Science 280, 82–85 (1998).

    Article  ADS  Google Scholar 

  31. Huang, X., Xiao, M., Zhang, Z-Q. & Chan, C. Sufficient condition for the existence of interface states in some two-dimensional photonic crystals. Phys. Rev. B 90, 075423 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.M. thanks Ke Sun for his technical support with measurements and signal processing. M.X. thanks Mengyuan He for his help with the numerical calculation of the Zak phase. This work was supported by the Hong Kong Research Grants Council (Grant No. AoE/P-02/12).

Author information

Authors and Affiliations

Authors

Contributions

M.X., Z.Q.Z. and C.T.C. provided the theoretical framework. M.X. carried out the numerical simulations. G.M. fabricated the samples and carried out experimental measurements. M.X., G.M., Z.Q.Z. and C.T.C. wrote the manuscript. All authors were involved in the analysis and discussion of the results.

Corresponding author

Correspondence to C. T. Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Ma, G., Yang, Z. et al. Geometric phase and band inversion in periodic acoustic systems. Nature Phys 11, 240–244 (2015). https://doi.org/10.1038/nphys3228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing