Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum criticality of Mott transition in organic materials

Abstract

A many-body quantum system on the verge of instability between two competing ground states may exhibit quantum-critical phenomena1,2, as has been intensively studied for magnetic systems. The Mott metal–insulator transition3, a phenomenon that is central to many investigations of strongly correlated electrons, is also supposed to be quantum critical, although this has so far not been demonstrated experimentally. Here, we report experimental evidence for the quantum-critical nature of the Mott instability, obtained by investigating the electron transport of three organic systems with different ground states under continuously controlled pressure. The resistivity obeys the material-independent quantum-critical scaling relation bifurcating into a Fermi liquid or Mott insulator, irrespective of the ground states. Electrons on the verge of becoming delocalized behave like a strange quantum-critical fluid before becoming a Fermi liquid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure and phase diagram of organic Mott systems.
Figure 2: The normalized resistivity (δP, T) of κ-Cu2(CN)3 measured from the metal–insulator crossover line against δP = PPc(T).
Figure 3: Scaling analysis.
Figure 4: Crossover behaviour of the scaling curve.

Similar content being viewed by others

References

  1. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  2. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).

    Article  ADS  Google Scholar 

  3. Mott, N. F. Metal–Insulator Transitions (Taylor & Francis, 1990).

    Book  Google Scholar 

  4. Terletska, H., Vučičević, J., Tanasković, D. & Dobrosavljević, V. Quantum critical transport near the Mott transition. Phys. Rev. Lett. 107, 026401 (2011).

    Article  ADS  Google Scholar 

  5. Senthil, T. Theory of a continuous Mott transition in two dimensions. Phys. Rev. B 78, 045109 (2008).

    Article  ADS  Google Scholar 

  6. Misawa, T. & Imada, M. Quantum criticality around metal–insulator transitions of strongly correlated electron systems. Phys. Rev. B 75, 115121 (2007).

    Article  ADS  Google Scholar 

  7. McWhan, D., Menth, A., Remeika, J., Brinkman, W. & Rice, T. Metal–insulator transitions in pure and doped V2O3 . Phys. Rev. B 7, 1920–1931 (1973).

    Article  ADS  Google Scholar 

  8. Yao, X., Honig, J., Hogan, T., Kannewurf, C. & Spałek, J. Electrical properties of NiS2−xSex single crystals: From Mott insulator to paramagnetic metal. Phys. Rev. B 54, 17469–17475 (1996).

    Article  ADS  Google Scholar 

  9. Lefebvre, S. et al. Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors. Phys. Rev. Lett. 85, 5420–5423 (2000).

    Article  ADS  Google Scholar 

  10. Limelette, P. et al. Mott transition and transport crossovers in the organic compound κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. Lett. 91, 016401 (2003).

    Article  ADS  Google Scholar 

  11. Kagawa, F., Miyagawa, K. & Kanoda, K. Unconventional critical behaviour in a quasi-two-dimensional organic conductor. Nature 436, 534–537 (2005).

    Article  ADS  Google Scholar 

  12. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  13. Vučičević, J., Terletska, H., Tanasković, D. & Dobrosavljević, V. Finite-temperature crossover and the quantum Widom line near the Mott transition. Phys. Rev. B 88, 075143 (2013).

    Article  ADS  Google Scholar 

  14. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    Article  ADS  Google Scholar 

  15. Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2 . Phys. Rev. B 77, 104413 (2008).

    Article  ADS  Google Scholar 

  16. Kanoda, K. & Kato, R. Mott physics in organic conductors with triangular lattices. Annu. Rev. Condens. Matter Phys. 2, 167–188 (2011).

    Article  ADS  Google Scholar 

  17. Kato, R. Development of π-electron systems based on [M(dmit)2] (M = Ni and Pd; dmit: 1,3-dithiole-2-thione-4,5-dithiolate) anion radicals. Bull. Chem. Soc. Jpn 87, 355–374 (2014).

    Article  Google Scholar 

  18. Powell, B. J. & McKenzie, R. H. Quantum frustration in organic Mott insulators: From spin liquids to unconventional superconductors. Rep. Prog. Phys. 74, 056501 (2011).

    Article  ADS  Google Scholar 

  19. Komatsu, T., Matsukawa, N., Inoue, T. & Saito, G. Realization of superconductivity at ambient pressure by band-filling control in κ-(BEDT-TTF)2Cu2(CN)3 . J. Phys. Soc. Jpn 65, 1340–1354 (1996).

    Article  ADS  Google Scholar 

  20. Kurosaki, Y., Shimizu, Y., Miyagawa, K., Kanoda, K. & Saito, G. Mott transition from a spin liquid to a Fermi liquid in the spin-frustrated organic conductor κ-(ET)2Cu2(CN)3 . Phys. Rev. Lett. 95, 177001 (2005).

    Article  ADS  Google Scholar 

  21. Kato, R., Tajima, A., Nakao, A., Tajima, N. & Tamura, M. in Multifunctional Conducting Molecular Materials (eds Saito, G. et al.) 32–38 (Royal Society of Chemistry, 2007).

    Google Scholar 

  22. Kobashi, K. Transport Properties Near the Mott Transition in the Quasi-Two-Dimensional Organic Conductor κ-(ET)  2 X Thesis, Univ. Tokyo (2007)

  23. Simonian, D., Kravchenko, S. V. & Sarachik, M. P. Reflection symmetry at a B = 0 metal–insulator transition in two dimensions. Phys. Rev. B 55, R13421–R13423 (1997).

    Article  ADS  Google Scholar 

  24. Amaricci, A. et al. Extended Hubbard model: Charge ordering and Wigner–Mott transition. Phys. Rev. B 82, 155102 (2010).

    Article  ADS  Google Scholar 

  25. Witczak-Krempa, W., Ghaemi, P., Senthil, T. & Kim, Y. B. Universal transport near a quantum critical Mott transition in two dimensions. Phys. Rev. B 86, 245102 (2012).

    Article  ADS  Google Scholar 

  26. Kravchenko, S. et al. Scaling of an anomalous metal–insulator transition in a two-dimensional system in silicon at B = 0. Phys. Rev. B 51, 7038–7045 (1995).

    Article  ADS  Google Scholar 

  27. Kosterlitz, J. M. The critical properties of the two-dimensional xy model. J. Phys. C 7, 1046–1060 (1974).

    ADS  Google Scholar 

  28. Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

    Article  ADS  Google Scholar 

  29. Senthil, T., Sachdev, S. & Vojta, M. Quantum phase transitions out of the heavy Fermi liquid. Physica B 359–361, 9–16 (2005).

    Article  ADS  Google Scholar 

  30. Sachdev, S. Holographic metals and the fractionalized Fermi liquid. Phys. Rev. Lett. 105, 151602 (2010).

    Article  ADS  Google Scholar 

  31. Davison, R. A., Schalm, K. & Zaanen, J. Holographic duality and the resistivity of strange metals. Phys. Rev. B 89, 245116 (2014).

    Article  ADS  Google Scholar 

  32. Kato, R. & Hengbo, C. Cation dependence of crystal structure and band parameters in a series of molecular conductors, β′-(Cation)[Pd(dmit)2]2 (dmit = 1,3-dithiole-2-thione-4,5-dithiolate). Crystals 2, 861–874 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Dobrosavljević, N. Nagaosa, H. Oike and T. Itou for fruitful discussions. This work was supported in part by JSPS KAKENHI under Grant Nos 20110002, 25220709 and 24654101, and the US National Science Foundation under Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics.

Author information

Authors and Affiliations

Authors

Contributions

T.F. and K.K. designed the experiments. T.F. performed the experiments and analysed the data. T.F. and K.K. interpreted the data. K.M., H.T. and R.K. grew the single crystals for the study. T.F. wrote the manuscript with the assistance of K.M. and K.K. K.K. headed this project.

Corresponding authors

Correspondence to Tetsuya Furukawa or Kazushi Kanoda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, T., Miyagawa, K., Taniguchi, H. et al. Quantum criticality of Mott transition in organic materials. Nature Phys 11, 221–224 (2015). https://doi.org/10.1038/nphys3235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing