Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of Josephson vortex cores

Abstract

Superconducting correlations may propagate between two superconductors separated by a tiny insulating or metallic barrier, allowing a dissipationless electric current to flow1,2. In the presence of a magnetic field, the maximum supercurrent oscillates3 and each oscillation corresponding to the entry of one Josephson vortex into the barrier4. Josephson vortices are conceptual blocks of advanced quantum devices such as coherent terahertz generators5 or qubits for quantum computing6, in which on-demand generation and control is crucial. Here, we map superconducting correlations inside proximity Josephson junctions7 using scanning tunnelling microscopy. Unexpectedly, we find that such Josephson vortices have real cores, in which the proximity gap is locally suppressed and the normal state recovered. By following the Josephson vortex formation and evolution we demonstrate that they originate from quantum interference of Andreev quasiparticles8, and that the phase portraits of the two superconducting quantum condensates at edges of the junction decide their generation, shape, spatial extent and arrangement. Our observation opens a pathway towards the generation and control of Josephson vortices by applying supercurrents through the superconducting leads of the junctions, that is, by purely electrical means without any need for a magnetic field, which is a crucial step towards high-density on-chip integration of superconducting quantum devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Josephson vortices imaged by scanning tunnelling spectroscopy at 0.3 K.
Figure 2: Josephson vortex formation and evolution with magnetic field.
Figure 3: Simulation of Josephson vortex maps.
Figure 4: Josephson vortex core: density of states and principle of generation by edge currents.

Similar content being viewed by others

References

  1. De Gennes, P. G. Boundary effects in superconductors. Rev. Mod. Phys. 36, 225–237 (1964).

    Article  ADS  Google Scholar 

  2. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  ADS  Google Scholar 

  3. Rowell, J. M. Magnetic field dependence of the Josephson tunnel current. Phys. Rev. Lett. 11, 200–202 (1963).

    Article  ADS  Google Scholar 

  4. Tinkham, M. Introduction to Superconductivity (McGraw Hill, 1996).

    Google Scholar 

  5. Ulrich Welp, U., Kadowaki, K. & Kleiner, R. Superconducting emitters of THz radiation. Nature Photon. 7, 702–710 (2013).

    Article  ADS  Google Scholar 

  6. Devoret, M. & Schoelkopf, R. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  7. Cuevas, J. C. & Bergeret, F. S. Magnetic interference patterns and vortices in diffusive SNS junctions. Phys. Rev. Lett. 99, 217002 (2007).

    Article  ADS  Google Scholar 

  8. Andreev, A. F. Electron spectrum of the intermediate state of superconductors. Zh. Eksp. Teor. Fiz. 49, 655–660 (1965); Sov. Phys. JETP 22, 455–458 (1966)

    Google Scholar 

  9. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (Wiley, 1982).

    Book  Google Scholar 

  10. Heersche, H. B., Jarrillo-Herrero, P., Oostinga, O. O., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    Article  ADS  Google Scholar 

  11. Veldhorst, M. et al. Josephson supercurrent through a topological insulator surface state. Nature Mater. 11, 417–421 (2012).

    Article  ADS  Google Scholar 

  12. Williams, J. R. et al. Unconventional Josephson effect in hybrid superconductor–topological insulator devices. Phys. Rev. Lett. 109, 056803 (2012).

    Article  ADS  Google Scholar 

  13. Abrikosov, A. A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1182 (1957).

    Google Scholar 

  14. Maggio-Aprile, I. et al. Critical currents approaching the depairing limit at a twin boundary in YBa2Cu3O7−δ . Nature 390, 487–490 (1997).

    Article  ADS  Google Scholar 

  15. Song, C-L. et al. Suppression of superconductivity by twin boundaries in FeSe. Phys. Rev. Lett. 109, 137004 (2012).

    Article  ADS  Google Scholar 

  16. Brun, C. et al. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon. Nature Phys. 10, 444–450 (2014).

    Article  ADS  Google Scholar 

  17. Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000).

    Article  ADS  Google Scholar 

  18. Blatter, G. & Geshkenbein, V. B. The Physics of Superconductors Vol. 1 (eds Bennemannand, K. H. & Kettersonet, J. B.) Ch. 10, 896–897 (Springer-Verlag, 2003)

  19. Gurevich, A. Nonlocal Josephson electrodynamics and pinning in superconductors. Phys. Rev. B 46, 3187(R) (1992).

    Article  ADS  Google Scholar 

  20. Kogan, V. G. et al. Josephson junction in a thin film. Phys. Rev. B 63, 144501 (2001).

    Article  ADS  Google Scholar 

  21. Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214–216 (1989).

    Article  ADS  Google Scholar 

  22. Zhang, T. et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nature Phys. 6, 104–108 (2010).

    Article  ADS  Google Scholar 

  23. Serrier-Garcia, L. et al. Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal. Phys. Rev. Lett. 110, 157003 (2013).

    Article  ADS  Google Scholar 

  24. Eom, D., Qin, S., Chou, M-Y. & Shih, C. K. Persistent superconductivity in ultrathin Pb films: A scanning tunneling spectroscopy study. Phys. Rev. Lett. 96, 027005 (2006).

    Article  ADS  Google Scholar 

  25. Nishio, T. et al. Superconducting Pb island nanostructures studied by scanning tunneling microscopy and spectroscopy. Phys. Rev. Lett. 101, 167001 (2008).

    Article  ADS  Google Scholar 

  26. Cren, T., Fokin, D., Debontridder, F., Dubost, F. & Roditchev, D. Ultimate vortex confinement studied by scanning tunneling spectroscopy. Phys. Rev. Lett. 102, 127005 (2009).

    Article  ADS  Google Scholar 

  27. Brun, C. et al. Reduction of the superconducting gap of ultrathin Pb islands grown on Si(111). Phys. Rev. Lett. 102, 207002 (2009).

    Article  ADS  Google Scholar 

  28. Cren, T., Serrier-Garcia, L., Debontridder, F. & Roditchev, D. Vortex fusion and giant vortex states in confined superconducting condensates. Phys. Rev. Lett. 107, 097202 (2011).

    Article  ADS  Google Scholar 

  29. Altshuler, B. L. & Aronov, A. G. in Electron–Electron Interactions in Disordered Systems (eds Efros, A. L. & Pollak, M.) (Elsevier Science Publisher B. V., 1985).

    Google Scholar 

  30. Golubov, A. A. & Kupriyanov, M. Y. Theoretical investigation of Josephson tunnel junctions with spatially inhomogeneous superconducting electrodes. J. Low Temp. Phys. 70, 83–130 (1988).

    Article  ADS  Google Scholar 

  31. Belzig, W. et al. Local density of states in a dirty normal metal connected to a superconductor. Phys. Rev. B 54, 9443–9448 (1996).

    Article  ADS  Google Scholar 

  32. Kim, J. et al. Visualization of geometric influences on proximity effects in heterogeneous superconductor thin films. Nature Phys. 8, 464–469 (2012).

    Article  ADS  Google Scholar 

  33. Le Sueur, H., Joyez, P., Pothier, H., Urbina, C. & Esteve, D. Phase controlled superconducting proximity effect probed by tunneling spectroscopy. Phys. Rev. Lett. 100, 197002 (2008).

    Article  ADS  Google Scholar 

  34. Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25, 507–509 (1970).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.C., C.B., F.D., V.S. and D.R. acknowledge financial support from the French ANR project ELECTROVORTEX and the French-Russian program PICS-CNRS/RAS. The authors also thank V. Cherkez for assistance during experiments and V. Vinokur (Argonne National Laboratory, Illinois USA) and A. Buzdin (University of Bordeaux 1, France) for stimulating discussions. J.C.C. acknowledges financial support from the Spanish MICINN (Contract No. FIS2011-28851-C1). V.H.L.B. acknowledges support from CNPq Brazil and productive discussions with Prof. A. Chaves (UFC, Brazil). M.V.M. acknowledges support from Research Foundation Flanders (FWO-Vlaanderen) and CAPES Brazil (PVE project BEX1392/11-5).

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conceived by D.R., T.C., C.B. and F.D. The experiments were performed by C.B., D.R., L.S-G., T.C., V.S. and F.D. Theoretical support was provided by J.C.C., V.H.L.B. and M.V.M. Superconducting correlation maps were calculated by T.C. The manuscript was written by D.R., J.C.C. and T.C. with comments and input from all authors.

Corresponding author

Correspondence to Tristan Cren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roditchev, D., Brun, C., Serrier-Garcia, L. et al. Direct observation of Josephson vortex cores. Nature Phys 11, 332–337 (2015). https://doi.org/10.1038/nphys3240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing