Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orbital textures and charge density waves in transition metal dichalcogenides

Abstract

Low-dimensional electron systems, as realized in layered materials, often tend to spontaneously break the symmetry of the underlying nuclear lattice by forming so-called density waves1; a state of matter that at present attracts enormous attention2,3,4,5,6. Here we reveal a remarkable and surprising feature of charge density waves, namely their intimate relation to orbital order. For the prototypical material 1T-TaS2 we not only show that the charge density wave within the two-dimensional TaS2 layers involves previously unidentified orbital textures of great complexity. We also demonstrate that two metastable stackings of the orbitally ordered layers allow manipulation of salient features of the electronic structure. Indeed, these orbital effects provide a route to switch 1T-TaS2 nanostructures from metallic to semiconducting with technologically pertinent gaps of the order of 200 meV. This new type of orbitronics is especially relevant for the ongoing development of novel, miniaturized and ultrafast devices based on layered transition metal dichalcogenides7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The supercell structure of 1T-TaS2.
Figure 2: Different layer stackings and their impact on the band structure.
Figure 3: Real-space illustration of the electron density for the highest occupied band.
Figure 4: Device concept based on the switching between metastable orbital orders.

Similar content being viewed by others

References

  1. Grüner, G. Density Waves in Solids Vol. 89 (Addison-Wesley, 1994).

    Google Scholar 

  2. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in Y Ba2Cu3O6.67 . Nature Phys. 8, 871–876 (2012).

    Article  ADS  Google Scholar 

  3. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    Article  ADS  Google Scholar 

  4. Da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).

    Article  ADS  Google Scholar 

  5. De la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  ADS  Google Scholar 

  6. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  7. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  ADS  Google Scholar 

  8. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

    Article  ADS  Google Scholar 

  9. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nature Mater. 7, 960–965 (2008).

    Article  ADS  Google Scholar 

  10. Fazekas, P. & Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2 . Phil. Mag. B 39, 229–244 (1979).

    Article  ADS  Google Scholar 

  11. Hellmann, S. et al. Ultrafast melting of a charge-density wave in the Mott insulator 1T-TaS2 . Phys. Rev. Lett. 105, 187401 (2010).

    Article  ADS  Google Scholar 

  12. Petersen, J. C. et al. Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 177402 (2011).

    Article  ADS  Google Scholar 

  13. Perfetti, L. et al. Time evolution of the electronic structure of 1T-TaS2 through the insulator–metal transition. Phys. Rev. Lett. 97, 067402 (2006).

    Article  ADS  Google Scholar 

  14. Wu, X. L. & Lieber, C. M. Hexagonal domain-like charge density wave phase of 1T-TaS2 determined by scanning tunneling microscopy. Science 243, 1703–1705 (1989).

    Article  ADS  Google Scholar 

  15. Spijkerman, A., de Boer, J. L., Meetsma, A., Wiegers, G. A. & van Smaalen, S. X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3 + 2)-dimensional superspace. Phys. Rev. B 56, 13757–13767 (1997).

    Article  ADS  Google Scholar 

  16. Ang, R. et al. Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2 . Phys. Rev. Lett. 109, 176403 (2012).

    Article  ADS  Google Scholar 

  17. Tanda, S., Sambongi, T., Tani, T. & Tanaka, S. X-ray study of charge density wave structure in 1T-TaS2 . J. Phys. Soc. Jpn 53, 476–479 (1984).

    Article  ADS  Google Scholar 

  18. Nakanishi, K. & Shiba, H. Theory of three-dimensional orderings of charge-density waves in 1T-TaX2 (X: S, Se). J. Phys. Soc. Jpn 53, 1103–1113 (1984).

    Article  ADS  Google Scholar 

  19. Bovet, M. et al. Interplane coupling in the quasi-two-dimensional 1T-TaS2 . Phys. Rev. B 67, 125105 (2003).

    Article  ADS  Google Scholar 

  20. Darancet, P., Millis, A. J. & Marianetti, C. A. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B 90, 045134 (2014).

    Article  ADS  Google Scholar 

  21. Damascelli, A., Hussain, Z. & Shen, Z-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  22. Ku, W., Berlijn, T. & Lee, C-C. Unfolding first-principles band structures. Phys. Rev. Lett. 104, 216401 (2010).

    Article  ADS  Google Scholar 

  23. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).

    Article  ADS  Google Scholar 

  24. Pillo, T. et al. Remnant Fermi surface in the presence of an underlying instability in layered 1T-TaS2 . Phys. Rev. Lett. 83, 3494–3497 (1999).

    Article  ADS  Google Scholar 

  25. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  ADS  Google Scholar 

  26. Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743–1757 (1999).

    Article  ADS  Google Scholar 

  27. Brouwer, R. Incommensurability in Crystal Structures PhD thesis, Rijksuniversiteit Groningen (1978)

  28. Rossnagel, K., Rotenberg, E., Koh, H., Smith, N. V. & Kipp, L. Continuous tuning of electronic correlations by alkali adsorption on layered 1T-TaS2 . Phys. Rev. Lett. 95, 126403 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the German Research Foundation under grant DFG-GRK1621. J.T. and J.G. gratefully acknowledge financial support by the German Research Foundation through the Emmy Noether program (grant GE 1647/2-1). Y.I.J. and P.A. were supported by US Department of Energy grant DE-FG02-06ER46285. We thank K. Rossnagel for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and P.A. conceived the research project on 1T-TaS2. T.R., J.T., Y.I.J., M.v.Z. and J.G. conducted the synchrotron experiments. H.B. grew the single crystals. T.R., J.T. and K.K. performed the DFT calculations. T.R., J.T. and J.G. analysed the results and developed the concept of orbitronics. T.R., J.T., K.K., M.v.Z., P.A., B.B. and J.G. prepared the manuscript.

Corresponding authors

Correspondence to T. Ritschel or J. Geck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritschel, T., Trinckauf, J., Koepernik, K. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nature Phys 11, 328–331 (2015). https://doi.org/10.1038/nphys3267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing