Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Persistence of magnetic field driven by relativistic electrons in a plasma

Abstract

The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms1, including instabilities2,3, dynamo effects4,5 and ultrahigh-energy particle flows through gas, plasma6,7 and interstellar media8,9. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each process operates can be reconciled by scaling parameters that enable one to emulate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles in a laser-wakefield accelerator strongly magnetizes the boundary between plasma and non-ionized gas. We demonstrate, from time-resolved large-scale magnetic-field measurements and full-scale particle-in-cell simulations, the generation of strong magnetic fields up to 10–100 tesla (corresponding to nT in astrophysical conditions). These results open new paths for the exploration and modelling of ultrahigh-energy particle-driven magnetic-field generation in the laboratory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement of the electron density and magnetic field on propagation of an intense laser pulse through a dense gas jet.
Figure 2: Magnetization of the plasma at selected times.
Figure 3: Evolution in time of the magnetic field.
Figure 4: Summarized results of a full 3D PIC simulation of the experiment.

Similar content being viewed by others

References

  1. Kulsrud, R. & Zweibel, E. B. On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008).

    Article  ADS  Google Scholar 

  2. Medvedev, M. V. & Loeb, A. Generation of magnetic fields in the relativistic shock of γ-ray burst sources. Astrophys. J. 526, 697–706 (1999).

    Article  ADS  Google Scholar 

  3. Silva, L. O. et al. Interpenetrating plasma shells: Near-equipartition magnetic field generation and nonthermal particle acceleration. Astrophys. J. Lett. 596, L121 (2003).

    Article  ADS  Google Scholar 

  4. Brandenburg, A., Sokoloff, D. & Subramanian, K. Current status of turbulent dynamo theory. Space Sci. Rev. 169, 123–157 (2012).

    Article  ADS  Google Scholar 

  5. Kulsrud, S. W. & Anderson, R. M. The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field. Astrophys. J. 396, 606–630 (1992).

    Article  ADS  Google Scholar 

  6. Robinson, A. P. L. & Sherlock, M. Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition. Phys. Plasmas 14, 083105 (2007).

    Article  ADS  Google Scholar 

  7. Bell, A. R. & Kingham, R. J. Resistive collimation of electron beams in laser-produced plasmas. Phys. Rev. Lett. 91, 035003 (2003).

    Article  ADS  Google Scholar 

  8. Miniati, F. & Bell, A. R. Resistive magnetic field generation at Cosmic Dawn. Astrophys. J. 729, 73 (2011).

    Article  ADS  Google Scholar 

  9. Gregori, G. et al. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves. Nature 481, 480–483 (2012).

    Article  ADS  Google Scholar 

  10. Hillas, A. M. The origin of ultra-high-energy cosmic rays. Ann. Rev. Astron. Astrophys. 22, 425–444 (1984).

    Article  ADS  Google Scholar 

  11. Spitkovsky, A. Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. Lett. 682, L5 (2008).

    Article  ADS  Google Scholar 

  12. Martins, S. F., Fonseca, R. A., Silva, L. O. & Mori, W. B. Ion dynamics and acceleration in relativistic shocks. Astrophys. J. Lett. 695, L189 (2009).

    Article  ADS  Google Scholar 

  13. Fermi, E. On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949).

    Article  ADS  Google Scholar 

  14. Gunn, J. E. & Ostriker, J. P. Acceleration of high-energy cosmic rays by pulsars. Phys. Rev. Lett. 22, 728–731 (1969).

    Article  ADS  Google Scholar 

  15. Fiuza, F., Fonseca, R. A., Tonge, J., Mori, W. B. & Silva, L. O. Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers. Phys. Rev. Lett. 108, 235004 (2012).

    Article  ADS  Google Scholar 

  16. Rosenzweig, J. B. Trapping, thermal effects, and wave breaking in the nonlinear plasma wake-field accelerator. Phys. Rev. A 38, 3634–3642 (1988).

    Article  ADS  Google Scholar 

  17. Chen, P., Tajima, T. & Takahashi, Y. Plasma wakefield acceleration for ultrahigh-energy cosmic rays. Phys. Rev. Lett. 89, 161101 (2002).

    Article  ADS  Google Scholar 

  18. Chang, F-Y., Chen, P., Lin, G-L., Noble, R. & Sydora, R. Magnetowave induced plasma wakefield acceleration for ultrahigh energy cosmic rays. Phys. Rev. Lett. 102, 111101 (2009).

    Article  ADS  Google Scholar 

  19. Malka, V. et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002).

    Article  ADS  Google Scholar 

  20. Modena, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608 (1995).

    Article  ADS  Google Scholar 

  21. Walton, B. et al. Measurements of magnetic field generation at ionization fronts from laser wakefield acceleration experiments. New J. Phys. 15, 025034 (2013).

    Article  ADS  Google Scholar 

  22. Sylla, F., Veltcheva, M., Kahaly, S., Flacco, A. & Malka, V. Development and characterization of very dense submillimetric gas jets for laser-plasma interaction. Rev. Sci. Instrum. 83, 033507 (2012).

    Article  ADS  Google Scholar 

  23. Lifschitz, A. et al. Ion acceleration in underdense plasmas by ultra-short laser pulses. New J. Phys. 16, 033031 (2014).

    Article  ADS  Google Scholar 

  24. Sun, G-Z., Ott, E., Lee, Y. C. & Guzdar, P. Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526–532 (1987).

    Article  ADS  Google Scholar 

  25. Fonseca, R. A. et al. Osiris: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. Lecture Notes Computer Sci. 2331, 342–351 (2002).

    Article  Google Scholar 

  26. Fonseca, R. A. et al. One-to-one direct modeling of experiments and astrophysical scenarios: Pushing the envelope on kinetic plasma simulations. Plasma Phys. Control. Fusion 50, 124034 (2008).

    Article  ADS  Google Scholar 

  27. Esirkepov, T. Zh., Kato, Y. & Bulanov, S. V. Bow wave from ultraintense electromagnetic pulses in plasmas. Phys. Rev. Lett. 101, 265001 (2008).

    Article  ADS  Google Scholar 

  28. Kronberg, P. P. Extragalactic magnetic fields. Rep. Prog. Phys. 57(4), 325–382 (1994).

    Article  ADS  Google Scholar 

  29. Buck, A. et al. Real-time observation of laser-driven electron acceleration. Nature Phys. 7, 1745–2473 (2011).

    Article  Google Scholar 

  30. Flacco, A., Rax, J-M. & Malka, V. Reconstruction of polar magnetic field from single axis tomography of Faraday rotation in plasmas. Phys. Plasmas 19, 103107 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of OSEO project n.I0901001W-SAPHIR, the support of the European Research Council through the PARIS ERC project (contract 226424) and the national research grants BLAN08-1-380251 (GOSPEL) and IS04-002-01 (ILA). A.F. acknowledges collaboration with T. Vinci (LULI, École Polytechnique). The work of J.V. and L.O.S. is partially supported by the European Research Council through the Accelerates ERC project (contract ERC-2010-AdG-267841) and by FCT, Portugal (contract EXPL/FIZ-PLA/0834/1012). We acknowledge PRACE for access to resources on SuperMUC (Leibniz Research Center).

Author information

Authors and Affiliations

Authors

Contributions

S.K., F.S., M.V. and A.F. conceived, designed and carried out the experimental measurements, A.F. conceived, designed and realized the analysis tools and performed the data analysis, A.L., J.V. and L.O.S. carried out the numerical simulations, A.F., J.V. and L.O.S. wrote the manuscript, V.M. provided overall supervision.

Corresponding author

Correspondence to A. Flacco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flacco, A., Vieira, J., Lifschitz, A. et al. Persistence of magnetic field driven by relativistic electrons in a plasma. Nature Phys 11, 409–413 (2015). https://doi.org/10.1038/nphys3303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing