Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3

Abstract

Heisenberg interactions are ubiquitous in magnetic materials and play a central role in modelling and designing quantum magnets. Bond-directional interactions1,2,3 offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model4, which has a quantum spin liquid as its exact ground state. Honeycomb iridates, A2IrO3 (A = Na, Li), offer potential realizations of the Kitaev magnetic exchange coupling, and their reported magnetic behaviour may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions has so far been indirect. Here we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and show that they lead to strong magnetic frustration. Diffuse magnetic X-ray scattering reveals broken spin-rotational symmetry even above the Néel temperature, with the three spin components exhibiting short-range correlations along distinct crystallographic directions. This spin- and real-space entanglement directly uncovers the bond-directional nature of these interactions, thus providing a direct connection between honeycomb iridates and Kitaev physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic easy axis and temperature dependence of the zigzag order.
Figure 2: Diffuse magnetic X-ray scattering intensities above TN.
Figure 3: Simulation of diffuse scattering using exact diagonalization.
Figure 4: Resonant inelastic X-ray scattering spectra below TN.

Similar content being viewed by others

References

  1. van Vleck, J. H. On the anisotropy of cubic ferromagnetic crystals. Phys. Rev. 52, 1178–1198 (1937).

    Article  ADS  Google Scholar 

  2. Khaliullin, G. Orbital order and fluctuations in Mott insulators. Prog. Theor. Phys. Suppl. 160, 155–202 (2005).

    Article  ADS  Google Scholar 

  3. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  ADS  Google Scholar 

  4. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  5. Kim, B. J. et al. Novel Jeff = 1/2 Mott state induced by relativistic spin–orbit coupling in Sr2IrO4 . Phys. Rev. Lett. 101, 076402 (2008).

    Article  ADS  Google Scholar 

  6. Kim, B. J. et al. Phase-sensitive observation of a spin–orbital Mott state in Sr2IrO4 . Science 323, 1329–1332 (2009).

    Article  ADS  Google Scholar 

  7. Takayama, T. et al. Hyper-honeycomb iridate β-Li2IrO3 as a platform for Kitaev magnetism. Phys. Rev. Lett. 114, 077202 (2015).

    Article  ADS  Google Scholar 

  8. Modic, K. A. et al. Realization of a three-dimensional spin-anisotropic harmonic honeycomb iridate. Nature Commun. 5, 4203 (2014).

    Article  ADS  Google Scholar 

  9. Kimchi, I. & Vishwanath, A. Kitaev–Heisenberg models for iridates on the triangular, hyperkagome, kagome, fcc, and pyrochlore lattices. Phys. Rev. B 89, 014414 (2014).

    Article  ADS  Google Scholar 

  10. Hermanns, M. & Trebst, S. Quantum spin liquid with a Majorana Fermi surface on the three-dimensional hyperoctagon lattice. Phys. Rev. B 89, 235102 (2014).

    Article  ADS  Google Scholar 

  11. Lee, S. B., Jeong, J-S., Hwang, K. & Kim, Y. B. Emergent quantum phases in a frustrated J1–J2 Heisenberg model on the hyperhoneycomb lattice. Phys. Rev. B 90, 134425 (2014).

    Article  ADS  Google Scholar 

  12. Plumb, K. W. et al. α-RuCl3: A spin–orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).

    Article  ADS  Google Scholar 

  13. Luo, Y. et al. Li2RhO3: A spin-glassy relativistic Mott insulator. Phys. Rev. B 87, 161121 (2013).

    Article  ADS  Google Scholar 

  14. Liu, X. et al. Long-range magnetic ordering in Na2IrO3 . Phys. Rev. B 83, 220403 (2011).

    Article  ADS  Google Scholar 

  15. Choi, S. K. et al. Spin waves and revised crystal structure of honeycomb iridate Na2IrO3 . Phys. Rev. Lett. 108, 127204 (2012).

    Article  ADS  Google Scholar 

  16. Ye, F. et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and X-ray diffraction investigation of single-crystal Na2IrO3 . Phys. Rev. B 85, 180403 (2012).

    Article  ADS  Google Scholar 

  17. Reuther, J., Thomale, R. & Rachel, S. Spiral order in the honeycomb iridate Li2IrO3 . Phys. Rev. B 90, 100405 (2014).

    Article  ADS  Google Scholar 

  18. Biffin, A. et al. Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γ-Li2IrO3 . Phys. Rev. Lett. 113, 197201 (2014).

    Article  ADS  Google Scholar 

  19. Biffin, A. et al. Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in β-Li2IrO3: Full solution via magnetic resonant X-ray diffraction. Phys. Rev. B 90, 205116 (2014).

    Article  ADS  Google Scholar 

  20. Chaloupka, J., Jackeli, G. & Khaliullin, G. Kitaev–Heisenberg model on a honeycomb lattice: Possible exotic phases in iridium oxides A2IrO3 . Phys. Rev. Lett. 105, 027204 (2010).

    Article  ADS  Google Scholar 

  21. Chaloupka, J., Jackeli, G. & Khaliullin, G. Zigzag magnetic order in the iridium oxide Na2IrO3 . Phys. Rev. Lett. 110, 097204 (2013).

    Article  ADS  Google Scholar 

  22. Lee, E. K-H. & Kim, Y. B. Theory of magnetic phase diagrams in hyperhoneycomb and harmonic-honeycomb iridates. Phys. Rev. B 91, 064407 (2015).

    Article  ADS  Google Scholar 

  23. Rau, J. G., Lee, E. K-H. & Kee, H-Y. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).

    Article  ADS  Google Scholar 

  24. Katukuri, V. M. et al. Kitaev interactions between j = 1/2 moments in honeycomb Na2IrO3 are large and ferromagnetic: Insights from ab initio quantum chemistry calculations. New J. Phys. 16, 013056 (2014).

    Article  ADS  Google Scholar 

  25. Yamaji, Y., Nomura, Y., Kurita, M., Arita, R. & Imada, M. First-principles study of the honeycomb-lattice iridates Na2IrO3 in the presence of strong spin–orbit interaction and electron correlations. Phys. Rev. Lett. 113, 107201 (2014).

    Article  ADS  Google Scholar 

  26. Shitade, A. et al. Quantum spin Hall effect in a transition metal oxide Na2IrO3 . Phys. Rev. Lett. 102, 256403 (2009).

    Article  ADS  Google Scholar 

  27. Mazin, I. I., Jeschke, H. O., Foyevtsova, K., Valenti, R. & Khomskii, D. I. Na2IrO3 as a molecular orbital crystal. Phys. Rev. Lett. 109, 197201 (2012).

    Article  ADS  Google Scholar 

  28. Kim, C. H., Kim, H. S., Jeong, H., Jin, H. & Yu, J. Topological quantum phase transition in 5d transition metal oxide Na2IrO3 . Phys. Rev. Lett. 108, 106401 (2012).

    Article  ADS  Google Scholar 

  29. Gretarsson, H. et al. Magnetic excitation spectrum of Na2IrO3 probed with resonant inelastic X-ray scattering. Phys. Rev. B 87, 220407 (2013).

    Article  ADS  Google Scholar 

  30. Price, C. & Perkins, N. B. Finite-temperature phase diagram of the classical Kitaev–Heisenberg model. Phys. Rev. B 88, 024410 (2013).

    Article  ADS  Google Scholar 

  31. Fujiyama, S. et al. Two-dimensional Heisenberg behavior of Jeff = 1/2 isospins in the paramagnetic state of the spin–orbital Mott insulator Sr2IrO4 . Phys. Rev. Lett. 108, 247212 (2012).

    Article  ADS  Google Scholar 

  32. Kimchi, I. & You, Y-Z. Kitaev–Heisenberg-J2-J3 model for the iridates A2IrO3 . Phys. Rev. B 84, 180407 (2011).

    Article  ADS  Google Scholar 

  33. Singh, Y. & Gegenwart, P. Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na2IrO3 . Phys. Rev. B 82, 064412 (2010).

    Article  ADS  Google Scholar 

  34. Kim, J. et al. Large spin-wave energy gap in the bilayer iridate Sr3Ir2O7: Evidence for enhanced dipolar interactions near the Mott metal–insulator transition. Phys. Rev. Lett. 109, 157402 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work in the Materials Science Division of Argonne National Laboratory (sample preparation, characterization, and contributions to data analysis) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. K.M. acknowledges support from UGC-CSIR, India. Y.S. acknowledges DST, India for support through Ramanujan Grant #SR/S2/RJN-76/2010 and through DST grant #SB/S2/CMP-001/2013. J.C. was supported by ERDF under project CEITEC (CZ.1.05/1.1.00/02.0068) and EC 7th Framework Programme (286154/SYLICA).

Author information

Authors and Affiliations

Authors

Contributions

B.J.K. conceived the project. S.H.C., J-W.K., J.K. and B.J.K. performed the experiment with support from Y.C., T.G., A.A-Z., M.M.S. and M.K. H.Z. and K.M. grew the single crystals; C.C.S., C.D.M. and K.M. characterized the samples under the supervision of J.F.M. and Y.S. S.H.C., J-W.K. and B.J.K. analysed the data. J.C. performed the numerical calculations. J.C., G.J. and G.K. developed the theoretical model. All authors discussed the results. B.J.K. led the manuscript preparation with contributions from all authors.

Corresponding author

Correspondence to B. J. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwan Chun, S., Kim, JW., Kim, J. et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3. Nature Phys 11, 462–466 (2015). https://doi.org/10.1038/nphys3322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3322

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing