Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing molecular chirality on a sub-femtosecond timescale

Abstract

Chiral molecules that are non-superimposable mirror images of each other, known as enantiomers, have identical chemical and physical properties unless they interact with another chiral entity, such as chiral light. Chiroptical1 effects arising from such interactions are used to detect enantiomers in mixtures and to induce enantioselective synthesis and catalysis. Chiroptical effects often arise from the interplay between light-induced electric- and magnetic-dipole transitions in a molecule and evolve on ultrafast electronic timescales. Here we use high-harmonic generation2,3 from a randomly oriented gas of molecules subjected to an intense laser field, to probe chiral interactions on these sub-femtosecond timescales. We show that a slight disparity in the laser-driven electron dynamics in the two enantiomers is recorded and amplified by several orders of magnitude in the harmonic spectra. Our work shows that chiroptical detection can go beyond detecting chiral structure4,5,6,7 to resolving and controlling chiral dynamics on electronic timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ellipticity dependence of HHG yield in epoxypropane.
Figure 2: Measured ellipticity dependence of HHG and time-resolved chiral response.
Figure 3: Mechanisms of chiral sensitivity for high-harmonic emission.
Figure 4: The origin of chiral sensitivity of high-harmonic emission in epoxypropane.

Similar content being viewed by others

References

  1. Berova, N., Polavarapu, P. L., Nakanishi, K. & Woody, R. W. (eds) Comprehensive Chiroptical Spectroscopy Vol. 1 (Wiley, 2012).

  2. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  Google Scholar 

  3. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  4. Herwig, P. et al. Imaging the absolute configuration of a chiral epoxide in the gas phase. Science 342, 1084–1086 (2013).

    Article  ADS  Google Scholar 

  5. Jiang, J. et al. Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission. Nature Commun. 4, 3010 (2013).

    Article  ADS  Google Scholar 

  6. Pitzer, M. et al. Direct determination of absolute molecular stereochemistry in gas phase by Coulomb explosion imaging. Science 341, 1096–1100 (2013).

    Article  ADS  Google Scholar 

  7. Patterson, D., Schnell, M. & Doyle, J. M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497, 475–477 (2013).

    Article  ADS  Google Scholar 

  8. Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article  ADS  Google Scholar 

  9. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  10. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  11. Doumy, G. et al. Attosecond synchronization of high-order harmonics from midinfrared drivers. Phys. Rev. Lett. 102, 093002 (2009).

    Article  ADS  Google Scholar 

  12. Fischer, P. & Hache, F. Nonlinear optical spectroscopy of chiral molecules. Chirality 17, 421–437 (2005).

    Article  Google Scholar 

  13. Rhee, H. et al. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 458, 310–313 (2009).

    Article  ADS  Google Scholar 

  14. Abderhalden, E. & Eichwald, E. Über optisch-aktives Propylenglykol und optisch-aktive β-Oxy-buttersäure. Ber. Dtsch. Chem. Ges. 51, 1312–1322 (1918).

    Article  Google Scholar 

  15. Bouchardat, G. & Lafont, J. Synthetical isoborneols; their identity with the fenchylic alcohols. C. R. Hebd. Seances Acad. Sci. 126, 755–757 (1898).

    Google Scholar 

  16. Turchini, S. et al. Circular dichroism in photoelectron spectroscopy of free chiral molecules: Experiment and theory on methyl-oxirane. Phys. Rev. A 70, 014502 (2004).

    Article  ADS  Google Scholar 

  17. Stranges, S. et al. Valence photoionization dynamics in circular dichroism of chiral free molecules: The methyl-oxirane. J. Chem. Phys. 122, 244303 (2005).

    Article  ADS  Google Scholar 

  18. Stener, M., Fronzoni, G., Di Tommaso, D. & Decleva, P. Density functional study on the circular dichroism of photoelectron angular distribution from chiral derivatives of oxirane. J. Chem. Phys. 120, 3284–3296 (2004).

    Article  ADS  Google Scholar 

  19. Garcia, G. A., Nahon, L., Daly, S. & Powis, I. Vibrationally induced inversion of photoelectron forward–backward asymmetry in chiral molecule photoionization by circularly polarized light. Nature Commun. 4, 2132 (2013).

    Article  ADS  Google Scholar 

  20. Powis, I., Harding, C. J., Garcia, G. A. & Nahon, L. A valence photoelectron imaging investigation of chiral asymmetry in the photoionization of fenchone and camphor. ChemPhysChem 9, 475–483 (2008).

    Article  Google Scholar 

  21. Ulrich, V. et al. Giant chiral asymmetry in the C 1s core level photoemission from randomly oriented fenchone enantiomers. J. Phys. Chem. A 112, 3544–3549 (2008).

    Article  Google Scholar 

  22. Lux, C. et al. Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 51, 5001–5005 (2012).

    Article  Google Scholar 

  23. Torres, R. et al. Extension of high harmonic spectroscopy in molecules by a 1300 nm laser field. Opt. Express 18, 3174–3180 (2010).

    Article  ADS  Google Scholar 

  24. Ivanov, M. Y., Brabec, T. & Burnett, N. Coulomb corrections and polarization effects in high-intensity high-harmonic emission. Phys. Rev. A 54, 742–745 (1996).

    Article  ADS  Google Scholar 

  25. Kroener, D. Chiral distinction by ultrashort laser pulses: Electron wavepacket dynamics incorporating magnetic interactions. J. Phys. Chem. A 115, 14510–14518 (2011).

    Article  Google Scholar 

  26. Mairesse, Y. et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phys. Rev. Lett. 104, 213601 (2010).

    Article  ADS  Google Scholar 

  27. Kimura, K., Katsumata, S., Achiba, Y., Yamazaki, T. & Iwata, S. Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules (Japan Scientific Societies Press, 1981).

    Google Scholar 

  28. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  29. Cundiff, S. T. & Weiner, A. M. Optical arbitrary waveform generation. Nature Photon. 4, 760–766 (2010).

    Article  ADS  Google Scholar 

  30. Xie, X. et al. Internal momentum state mapping using high harmonic radiation. Phys. Rev. Lett. 101, 033901 (2008).

    Article  ADS  Google Scholar 

  31. Budil, K. S., Salières, P., Perry, M. D. & L’Huillier, A. Influence of ellipticity on harmonic generation. Phys. Rev. A 48, R3437–R3440 (1993).

    Article  ADS  Google Scholar 

  32. Sukiasyan, S., Patchkovskii, S., Smirnova, O., Brabec, T. & Ivanov, M. Exchange and polarization effect in high-order harmonic imaging of molecular structures. Phys. Rev. A 82, 043414 (2010).

    Article  ADS  Google Scholar 

  33. Patchkovskii, S., Zhao, Z., Brabec, T. & Villeneuve, D. M. High harmonic generation and molecular orbital tomography in multielectron systems. J. Comput. Phys. 126, 114306 (2007).

    Google Scholar 

  34. Smirnova, O., Spanner, M. & Ivanov, M. Analytical solutions for strong field-driven atomic and molecular one- and two-electron continua and applications to strong-field problems. Phys. Rev. A 77, 033407 (2008).

    Article  ADS  Google Scholar 

  35. Smirnova, O. et al. Attosecond circular dichroism spectroscopy of polyatomic molecules. Phys. Rev. Lett. 102, 063601 (2009).

    Article  ADS  Google Scholar 

  36. Huang, S. W. & Carrington, T. A comparison of filter diagonalisation methods with the Lanczos method for calculating vibrational energy levels. Chem. Phys. Lett. 312, 311–318 (1999).

    Article  ADS  Google Scholar 

  37. Suarez, J., Farantos, S. C., Stamatiadis, S. & Lathouwers, L. A method for solving the molecular Schrödinger equation in cartesian coordinates via angular momentum projection operators. Comput. Phys. Commun. 180, 2025–2033 (2009).

    Article  ADS  Google Scholar 

  38. Kosloff, R. Dynamics of Molecules and Chemical Reactions 185–230 (CRC Press, 1996).

    Google Scholar 

  39. Burnett, K., Reed, V. C., Cooper, J. & Knight, P. L. Calculation of the background emitted during high-harmonic generation. Phys. Rev. A 45, 3347–3349 (1992).

    Article  ADS  Google Scholar 

  40. Smirnova, O. & Ivanov, M. Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy Ch. 7, 201–256 (Wiley-VCH, 2014).

    Book  Google Scholar 

  41. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  42. Shafir, D. et al. Resolving the time when an electron exits a tunneling barrier. Nature 485, 343–346 (2012).

    Article  ADS  Google Scholar 

  43. Chirilǎ, C. C., Kylstra, N. J., Potvliege, R. M. & Joachain, C. J. Nondipole effects in photon emission by laser-driven ions. Phys. Rev. A 66, 063411 (2002).

    Article  ADS  Google Scholar 

  44. Spanner, M. & Patchkovskii, S. One-electron ionization of multielectron systems in strong nonresonant laser fields. Phys. Rev. A 80, 063411 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Experiments on epoxypropane were performed at Advanced Laser Light Source in Montreal. We thank A. Laramée and F. Poitras for their technical expertise. Experiments on fenchone were performed at CELIA, Université de Bordeaux, Talence. We thank E. Constant, E. Cormier and E. Mével for providing key apparatus used in the experiment. We thank M. Y. Ivanov, L. Nahon and M. Spanner for fruitful discussions. We acknowledge financial support from Natural Science and Engineering Research Council of Canada, Canadian Foundation for Innovation, Canada Research Chairs, FRQNT, MDEIE, CIPI, CFI, ANR (ANR-08-JCJC-0029 HarMoDyn), the Conseil Regional d’Aquitaine (20091304003 ATTOMOL and 2.1.3-09010502 COLA2), the European Union (Laserlab), the European COST Action CM1204 XLIC, the EU Marie Curie ITN network CORINF, Grant Agreement No. 264951, and the support of Einstein foundation project A-211-55 Attosecond Electron Dynamics.

Author information

Authors and Affiliations

Authors

Contributions

R.C. and A.E.B. contributed equally to the experimental work. A.E.B. and V.R.B. designed experiments on epoxypropane and analysed the data; A.E.B., M.C.H.W. and A.F.A., in collaboration with B.E.S., N.T. and F.L., performed experiments on epoxypropane at ALLS. R.C., B.F., A.F., J.H., H.R., N.T., V.B. and Y.M. designed, conducted and analysed the fenchone measurements. D.D. and S.Petit operated the laser system at CELIA. J.S. and B.P. performed the TDSE calculations for the model chiral molecules and analysed the type-I mechanism of cHHG. S.Patchkovskii proposed and analysed the type-I mechanism of cHHG and performed quantum chemical calculations for epoxypropane and fenchone. O.S. proposed and analysed the type-II mechanism of cHHG and the reconstruction of the time-dependent chiral response. All authors contributed to writingthe manuscript.

Corresponding authors

Correspondence to O. Smirnova, Y. Mairesse or V. R. Bhardwaj.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cireasa, R., Boguslavskiy, A., Pons, B. et al. Probing molecular chirality on a sub-femtosecond timescale. Nature Phys 11, 654–658 (2015). https://doi.org/10.1038/nphys3369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing