Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP

Abstract

Recent experiments have revealed spectacular transport properties in semimetals, such as the large, non-saturating magnetoresistance exhibited by WTe2 (ref. 1). Topological semimetals with massless relativistic electrons have also been predicted2 as three-dimensional analogues of graphene3. These systems are known as Weyl semimetals, and are predicted to have a range of exotic transport properties and surface states4,5,6,7, distinct from those of topological insulators8,9. Here we examine the magneto-transport properties of NbP, a material the band structure of which has been predicted to combine the hallmarks of a Weyl semimetal10,11 with those of a normal semimetal. We observe an extremely large magnetoresistance of 850,000% at 1.85 K (250% at room temperature) in a magnetic field of up to 9 T, without any signs of saturation, and an ultrahigh carrier mobility of 5 × 106 cm2 V−1 s−1 that accompanied by strong Shubnikov–de Haas (SdH) oscillations. NbP therefore presents a unique example of a material combining topological and conventional electronic phases, with intriguing physical properties resulting from their interplay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Band structure for different semimetals.
Figure 2: Crystal structure, magnetoresistance and mobility.
Figure 3: High-field magnetoresistance and SdH oscillation.
Figure 4: Bulk band structures of NbP.

Similar content being viewed by others

References

  1. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

    Article  ADS  Google Scholar 

  2. Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  3. Novoselov, K. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  4. Turner, A. M. & Vishwanath, A. Beyond band insulators: Topology of semi-metals and interacting phases. Preprint at http://arxiv.org/abs/1301.0330 (2013).

  5. Hosur, P. & Qi, X. L. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    Article  ADS  Google Scholar 

  6. Vafek, O. & Vishwanath, A. Dirac Fermions in solids: From high-T c cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

    Article  ADS  Google Scholar 

  7. Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  8. Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  9. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  10. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  11. Huang, S-M. et al. An inversion breaking Weyl semimetal state in the TaAs material class. Preprint at http://arxiv.org/abs/1501.00755 (2015).

  12. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  13. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  14. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  15. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  ADS  Google Scholar 

  16. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 . Nature Mater. 14, 280–284 (2014).

    Article  ADS  Google Scholar 

  17. Narayanan, A. et al. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2 . Phys. Rev. Lett. 114, 117201 (2015).

    Article  ADS  Google Scholar 

  18. Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N. & Petroff, F. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  ADS  Google Scholar 

  19. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  ADS  Google Scholar 

  20. Parkin, S. et al. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003).

    Google Scholar 

  21. Singleton, J. Band Theory and Electronic Properties of Solids (Oxford Univ. Press, 2001).

    Google Scholar 

  22. Mangez, J. H., Issi, J. P. & Heremans, J. Transport properties of bismuth in quantizing magnetic fields. Phys. Rev. B 14, 4381–4385 (1976).

    Article  ADS  Google Scholar 

  23. Heremans, J. et al. Cyclotron resonance in epitaxial Bi1−xSbx films grown by molecular-beam epitaxy. Phys. Rev. B 48, 11329–11335 (1993).

    Article  ADS  Google Scholar 

  24. Yang, F. Y. et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335–1337 (1999).

    Article  ADS  Google Scholar 

  25. Fauqué, B., Vignolle, B., Proust, C., Issi, J-P. & Behnia, K. Electronic instability in bismuth far beyond the quantum limit. New J. Phys. 11, 113012 (2009).

    Article  ADS  Google Scholar 

  26. Xu, R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 (1997).

    Article  ADS  Google Scholar 

  27. Zhang, W. et al. Topological aspect and quantum magnetoresistance of β-Ag2Te. Phys. Rev. Lett. 106, 156808 (2011).

    Article  ADS  Google Scholar 

  28. Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Mater. 9, 541–545 (2010).

    Article  ADS  Google Scholar 

  29. Shekhar, C. et al. Ultrahigh mobility and nonsaturating magnetoresistance in Heusler topological insulators. Phys. Rev. B 86, 155314 (2012).

    Article  ADS  Google Scholar 

  30. Yan, B. & de Visser, A. Half-Heusler topological insulators. MRS Bull. 39, 859–866 (2014).

    Article  Google Scholar 

  31. He, L. P. et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 . Phys. Rev. Lett. 113, 246402 (2014).

    Article  ADS  Google Scholar 

  32. Feng, J. et al. Large linear magnetoresistance in Dirac semi-metal Cd3As2 with Fermi surfaces close to the Dirac points. Preprint at http://arxiv.org/abs/1405.6611v1 (2014).

  33. He, L. P. et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 . Phys. Rev. Lett. 113, 246402 (2014).

    Article  ADS  Google Scholar 

  34. Zhang, C. et al. Tantalum monoarsenide: An exotic compensated semimetal. Preprint at http://arxiv.org/abs/1502.00251 (2015).

  35. Parish, M. M. & Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 426, 162–165 (2003).

    Article  ADS  Google Scholar 

  36. Abrikosov, A. Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998).

    Article  ADS  Google Scholar 

  37. Collaudin, A., Fauqué, B., Fuseya, Y., Kang, W. & Behnia, K. Angle dependence of the orbital magnetoresistance in bismuth. Phys. Rev. X 5, 021022 (2015).

    Google Scholar 

  38. Martin, J. & Gruehn, R. Zum chemischen Transport von Monophosphiden MP (M = Zr, Hf, Nb, Ta, Mo, W) und Diposphiden MP2 (M = Ti, Zr, Hf). Z. Kristallogr. 182, 180–182 (1988).

    Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  40. Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft DFG (Project No.EB 518/1-1 of DFG-SPP 1666 ‘Topological Insulators’) and by the ERC Advanced Grant No. (291472) ‘Idea Heusler’. Y.C. acknowledge support from the EPSRC (UK) grant EP/K04074X/1 and a DARPA (US) MESO project (no. N66001-11-1-4105). We acknowledge the support of the High Magnetic Field Laboratory Dresden (HLD) at HZDR and High Field Magnet Laboratory Nijmegen (HFML-RU/FOM), members of the European Magnetic Field Laboratory (EMFL).

Author information

Authors and Affiliations

Authors

Contributions

B.Y. conceived the original idea for the project. C.S. performed the low-field PPMS measurement with the help of M.N. and W.S. C.S., I.L. and U.Z. performed the 30 T static magnetic field measurements. Y.Skourski, A.K.N. and J.W. performed the pulsed high magnetic field experiments. M.S. grew the single-crystal samples. Y.Sun and B.Y. calculated band structures. H.B. and Y.G. characterized the crystal structure. Z.L. and Y.C. contributed to helpful discussions. All authors analysed the results. B.Y., C.S. and A.K.N. wrote the manuscript with substantial contributions from all authors. C.F. supervised the project.

Corresponding author

Correspondence to Binghai Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, C., Nayak, A., Sun, Y. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Phys 11, 645–649 (2015). https://doi.org/10.1038/nphys3372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing