Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Central engine of a gamma-ray blazar resolved through the magnifying glass of gravitational microlensing

Abstract

Gamma-ray emission from blazars is known to originate from jets emitted by supermassive black holes1. However, the exact location and size of the γ-ray emitting part of the jets is uncertain2,3,4,5,6. The main difficulty is the very small angular size of these sources, beyond the angular resolution of γ-ray telescopes. Here, we report a measurement of the projected size of the γ-ray jet, revealed by the detection of microlensing in the gravitationally lensed blazar PKS 1830-211. This measurement is consistent with a constraint from the intrinsic variability timescale of the blazar. Our measurement shows that the γ-ray emission originates from the vicinity of the central supermassive black hole. Combining the X-ray and γ-ray data, we use the microlensing effect to constrain the size of the X-ray source. We show that the effect of pair production of γ-rays on X-ray photons does not make the source opaque, owing to the large size of the X-ray emission region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fermi/LAT light curves of PKS 1830-211 over the flaring episodes, produced with adaptive time binning.
Figure 2: Summary of constraints on the size of the γ-ray emission zone of PKS 1830-211, compared to its characteristic distance scale.

Similar content being viewed by others

References

  1. Urry, C. M. & Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 107, 803–845 (1995).

    Article  ADS  Google Scholar 

  2. Aharonian, F. et al. An exceptional very high energy γ-ray flare of PKS 2155-304. Astrophys. J. 664, L71–L74 (2007).

    Article  ADS  Google Scholar 

  3. Vovk, I. & Neronov, A. Variability of γ-ray emission from blazars on black hole timescales. Astrophys. J. 767, 103 (2013).

    Article  ADS  Google Scholar 

  4. Abdo, A. A. et al. A change in the optical polarization associated with a γ-ray flare in the blazar 3C279. Nature 463, 919–923 (2010).

    Article  ADS  Google Scholar 

  5. Tavecchio, F. et al. On the origin of the γ-ray emission from the flaring blazar PKS 1222+216. Astron. Astrophys. 534, A86 (2011).

    Article  Google Scholar 

  6. Ghisellini, G., Tavecchio, F., Foschini, L., Bonnoli, G. & Tagliaferri, G. The red blazar PMN J2345-1555 becomes blue. Mon. Not. R. Astron. Soc. 432, L66 (2013).

    Article  ADS  Google Scholar 

  7. Nolan, P. L. et al. Fermi large area telescope second source catalog. Astrophys. J. 199, 31 (2012).

    Article  Google Scholar 

  8. Jelley, J. V. Absorption of high-energy γ-rays within quasars and other radio sources. Nature 211, 472–475 (1966).

    Article  ADS  Google Scholar 

  9. Maraschi, L., Ghisellini, G. & Celotti, A. A jet model for the γ-ray emitting blazar 3C 279. Astrophys. J. 397, L5–L9 (1992).

    Article  ADS  Google Scholar 

  10. Dermer, C. D., Schlickeiser, R. & Mastichiadis, A. High-energy γ radiation from extragalactic radio sources. Astrophys. J. 256, L27–L30 (1992).

    ADS  Google Scholar 

  11. Bednarek, W. Can high-energy γ-ray photons escape from the radiation field emitted by an accretion disk? Astron. Astrophys. 278, 307–314 (1993).

    ADS  Google Scholar 

  12. Liu, H. T. & Bai, J. M. Absorption of 10–200 GeV γ rays by radiation from broad-line regions in blazars. Astrophys. J. 653, 1089–1097 (2006).

    Article  ADS  Google Scholar 

  13. Poutanen, J. & Stern, B. GeV Breaks in blazars as a result of γ-ray absorption within the broad-line region. Astrophys. J. 717, L118–L121 (2010).

    Article  ADS  Google Scholar 

  14. Begelman, M. C., Fabian, A. C. & Rees, M. J. Implications of very rapid TeV variability in blazars. Mon. Not. R. Astron. Soc. 384, L19–L23 (2008).

    Article  ADS  Google Scholar 

  15. Giannios, D., Uzdensky, D. A. & Begelman, M. C. Fast TeV variability in blazars: Jets in a jet. Mon. Not. R. Astron. Soc. 395, L29–L33 (2009).

    Article  ADS  Google Scholar 

  16. Barkov, M. V., Aharonian, F. A., Bogovalov, S. V., Kelner, S. R. & Khangulyan, D. Rapid TeV variability in blazars as a result of jet–star interaction. Astrophys. J. 749, 119 (2012).

    Article  ADS  Google Scholar 

  17. Mediavilla, E., Jimenez-Vicente, J., Munoz, J. A., Mediavilla, T. & Ariza, O. Statistics of microlensing caustic crossings in Q 2237+0305: Peculiar velocity of the lens galaxy and accretion disk size. Astrophys. J. 798, 138 (2015).

    Article  ADS  Google Scholar 

  18. Guerras, E. et al. Microlensing of quasar ultraviolet iron emission. Astrophys. J. 778, 123 (2013).

    Article  ADS  Google Scholar 

  19. Kochanek, C. S. Quantitative interpretation of quasar microlensing light curves. Astrophys. J. 605, 58–77 (2004).

    Article  ADS  Google Scholar 

  20. Eigenbrod, A. et al. Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 = the Einstein Cross. II. Energy profile of the accretion disk. Astron. Astrophys. 490, 933–943 (2008).

    Article  ADS  Google Scholar 

  21. Chartas, G. et al. Revealing the structure of an accretion disk through energy-dependent X-ray microlensing. Astrophys. J. 757, 137 (2012).

    Article  ADS  Google Scholar 

  22. Jauncey, D. L. et al. An unusually strong Einstein ring in the radio source PKS1830-211. Nature 352, 132–134 (1991).

    Article  ADS  Google Scholar 

  23. Lidman, C. et al. The redshift of the gravitationally lensed radio source PKS 1830-211. Astrophys. J. 514, L57–L60 (1999).

    Article  ADS  Google Scholar 

  24. Wiklind, T. & Combes, F. The redshift of the gravitational lens of PKS1830-211 determined from molecular absorption lines. Nature 379, 139–141 (1996).

    Article  ADS  Google Scholar 

  25. Lovell, J. E. J. et al. PKS 1830-211: A possible compound gravitational lens. Astrophys. J. 472, L5–L7 (1996).

    Article  ADS  Google Scholar 

  26. Cheung, C. C. et al. Fermi Large Area Telescope detection of gravitational lens delayed?—Ray flares from blazar B0218+357. Astrophys. J. 782, L14 (2014).

    Article  ADS  Google Scholar 

  27. Abdo, A. A. et al. γ-ray flaring activity from the gravitationally lensed blazar PKS 1830–211 observed by Fermi LAT. Astrophys. J. 799, 143 (2015).

    Article  ADS  Google Scholar 

  28. Lovell, J. E. J. et al. The time delay in the gravitational lens PKS 1830-211. Astrophys. J. 508, L51–L54 (1998).

    Article  ADS  Google Scholar 

  29. Chang, K. Maximum flux amplification by star disturbances in gravitational lens galaxies. Astron. Astrophys. 130, 157–161 (1984).

    ADS  MATH  Google Scholar 

  30. Kogut, A. et al. Dipole anisotropy in the COBE differential microwave radiometers first-year sky maps. Astrophys. J. 419, 1–6 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of I.V. is supported by the Swiss National Science Foundation grant P2GEP2_151815. The work of A.N. is supported by the Swiss National Science Foundation grant PP00P2_144923.

Author information

Authors and Affiliations

Authors

Contributions

I.V. and D.M. performed the analysis of the Fermi/LAT data. A.N. and I.V. jointly investigated the theoretical aspects of this work. D.M. performed the analysis of the INTERGRAL observations. A.N. and I.V. jointly wrote the paper. All authors took part in discussion of the results and contributed to the manuscript.

Corresponding authors

Correspondence to Andrii Neronov or Ievgen Vovk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neronov, A., Vovk, I. & Malyshev, D. Central engine of a gamma-ray blazar resolved through the magnifying glass of gravitational microlensing. Nature Phys 11, 664–667 (2015). https://doi.org/10.1038/nphys3376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing