Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gating a single-molecule transistor with individual atoms

Abstract

Transistors, regardless of their size, rely on electrical gates to control the conductance between source and drain contacts. In atomic-scale transistors, this conductance is sensitive to single electrons hopping via individual orbitals1,2. Single-electron transport in molecular transistors has been previously studied using top-down approaches to gating, such as lithography and break junctions1,3,4,5,6,7,8,9,10,11. But atomically precise control of the gate—which is crucial to transistor action at the smallest size scales—is not possible with these approaches. Here, we used individual charged atoms, manipulated by a scanning tunnelling microscope12, to create the electrical gates for a single-molecule transistor. This degree of control allowed us to tune the molecule into the regime of sequential single-electron tunnelling, albeit with a conductance gap more than one order of magnitude larger than observed previously8,11,13,14. This unexpected behaviour arises from the existence of two different orientational conformations of the molecule, depending on its charge state. Our results show that strong coupling between these charge and conformational degrees of freedom leads to new behaviour beyond the established picture of single-electron transport in atomic-scale transistors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrostatic gating of an organic molecule using charged indium adatoms.
Figure 2: Change of molecular conformation on charging.
Figure 3: Gap formation in the sequential tunnelling regime due to coupled charge and conformational states.
Figure 4: Molecular charge bistability and switching dynamics within the conductance gap.

Similar content being viewed by others

References

  1. Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    Article  ADS  Google Scholar 

  2. Kouwenhoven, L. P., Austing, D. G. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001).

    Article  ADS  Google Scholar 

  3. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  ADS  Google Scholar 

  4. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2002).

    Article  ADS  Google Scholar 

  5. Yu, L. H. et al. Inelastic electron tunneling via molecular vibrations in single-molecule transistors. Phys. Rev. Lett. 93, 266802 (2004).

    Article  ADS  Google Scholar 

  6. Roch, N., Florens, S., Bouchiat, V., Wernsdorfer, W. & Balestro, F. Quantum phase transition in a single-molecule quantum dot. Nature 453, 633–637 (2008).

    Article  ADS  Google Scholar 

  7. Song, H. et al. Observation of molecular orbital gating. Nature 462, 1039–1042 (2009).

    Article  ADS  Google Scholar 

  8. Leturcq, R. et al. Franck–Condon blockade in suspended carbon nanotube quantum dots. Nature Phys. 5, 327–331 (2009).

    Article  ADS  Google Scholar 

  9. Champagne, A. R., Pasupathy, A. N. & Ralph, D. C. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett. 5, 305–308 (2005).

    Article  ADS  Google Scholar 

  10. Perrin, M. L. et al. Large tunable image-charge effects in single-molecule junctions. Nature Nanotech. 8, 282–287 (2013).

    Article  ADS  Google Scholar 

  11. Burzurí, E. et al. Franck–Condon blockade in a single-molecule transistor. Nano Lett. 14, 3191–3196 (2014).

    Article  ADS  Google Scholar 

  12. Stroscio, J. A. & Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319–1326 (1991).

    Article  ADS  Google Scholar 

  13. Koch, J. & von Oppen, F. Franck–Condon blockade and giant Fano factors in transport through single molecules. Phys. Rev. Lett. 94, 206804 (2005).

    Article  ADS  Google Scholar 

  14. Ryndyk, D. A., Amico, P. D., Cuniberti, G. & Richter, K. Charge-memory effect in molecular junctions. Phys. Rev. B 78, 085409 (2008).

    Article  ADS  Google Scholar 

  15. Nacci, C., Erwin, S. C., Kanisawa, K. & Fölsch, S. Controlled switching within an organic molecule deliberately pinned to a semiconductor surface. ACS Nano 6, 4190–4195 (2012).

    Article  Google Scholar 

  16. Olsson, L. O.̈ et al. Charge accumulation at InAs surfaces. Phys. Rev. Lett. 76, 3626–3629 (1996).

    Article  ADS  Google Scholar 

  17. Fölsch, S., Yang, J., Nacci, C. & Kanisawa, K. Atom-by-atom quantum state control in adatom chains on a semiconductor. Phys. Rev. Lett. 103, 096104 (2009).

    Article  ADS  Google Scholar 

  18. Piva, P. G. et al. Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005).

    Article  ADS  Google Scholar 

  19. Riss, A. et al. Imaging and tuning molecular levels at the surface of a gated graphene device. ACS Nano 8, 5395–5401 (2014).

    Article  Google Scholar 

  20. Lee, D. H. & Gupta, J. A. Tunable field control over the binding energy of single dopants by a charged vacancy in GaAs. Science 330, 1807–1810 (2010).

    Article  ADS  Google Scholar 

  21. Swart, I., Sonnleitner, T. & Repp, J. Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast. Nano Lett. 11, 1580–1584 (2011).

    Article  ADS  Google Scholar 

  22. Fernández-Torrente, I., Kreikemeyer-Lorenzo, D., Stróżecka, A., Franke, K. J. & Pascual, J. I. Gating the charge state of single molecules by local electric fields. Phys. Rev. Lett. 108, 036801 (2012).

    Article  ADS  Google Scholar 

  23. Teichmann, K. et al. Controlled charge switching on a single donor with a scanning tunneling microscope. Phys. Rev. Lett. 101, 076103 (2008).

    Article  ADS  Google Scholar 

  24. Yang, J., Erwin, S. C., Kanisawa, K., Nacci, C. & Fölsch, S. Emergent multistability in assembled nanostructures. Nano Lett. 11, 2486–2489 (2011).

    Article  ADS  Google Scholar 

  25. Stern, F. & Howard, W. E. Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. 163, 816–835 (1967).

    Article  ADS  Google Scholar 

  26. Schuler, B. et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 111, 106103 (2013).

    Article  ADS  Google Scholar 

  27. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  ADS  Google Scholar 

  28. Paulsson, M., Zahid, F. & Datta, S. in Nanoscience, Engineering, and Technology Handbook (eds Goddard, W., Brenner, D., Lyshevski, S. & Iafrate, G.) (CRC Press, 2003).

    Google Scholar 

  29. Nazin, G. V., Wu, S. W. & Ho, W. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope. Proc. Natl Acad. Sci. USA 102, 8832–8837 (2005).

    Article  ADS  Google Scholar 

  30. Nazarov, Y. V. & Blanter, Y. M. Quantum Transport (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  31. Fölsch, S., Martínez-Blanco, J., Yang, J., Kanisawa, K. & Erwin, S. C. Quantum dots with single-atom precision. Nature Nanotech. 9, 505–508 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (Collaborative Research Network SFB 658) and the Office of Naval Research through the Naval Research Laboratory’s Basic Research Program. Some computations were performed at the DoD Major Shared Resource Center at AFRL.

Author information

Authors and Affiliations

Authors

Contributions

J.M.-B., C.N. and S.F. performed the STM experiment and the experimental data analysis. K.K. performed the MBE growth of the InAs samples. S.C.E. predicted the charge-induced molecular reorientation based on density-functional-theory calculations. E.L. and M.T. performed the generic model calculations of the coupled electronic and conformational dynamics. F.v.O. and P.W.B. developed the generic model. J.M.-B., S.C.E., E.L., M.T., F.v.O., P.W.B. and S.F. co-wrote the manuscript.

Corresponding author

Correspondence to Stefan Fölsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Blanco, J., Nacci, C., Erwin, S. et al. Gating a single-molecule transistor with individual atoms. Nature Phys 11, 640–644 (2015). https://doi.org/10.1038/nphys3385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing