Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Network motifs emerge from interconnections that favour stability

Subjects

Abstract

The microscopic principles organizing dynamic units in complex networks—from proteins to power generators—can be understood in terms of network ‘motifs’: small interconnection patterns that appear much more frequently in real networks than expected in random networks1,2. When considered as small subgraphs isolated from a large network, these motifs are more robust to parameter variations, easier to synchronize than other possible subgraphs, and can provide specific functionalities3,4,5,6,7,8,9,10,11,12,13,14,15. But one can isolate these subgraphs only by assuming, for example, a significant separation of timescales, and the origin of network motifs and their functionalities when embedded in larger networks remain unclear. Here we show that most motifs emerge from interconnection patterns that best exploit the intrinsic stability characteristics at different scales of interconnection, from simple nodes to whole modules. This functionality suggests an efficient mechanism to stably build complex systems by recursively interconnecting nodes and modules as motifs. We present direct evidence of this mechanism in several biological networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean contraction loss of all 3- or 4-node subgraphs.
Figure 2: Relative contraction loss versus normalized Z-score.
Figure 3: Relative contraction loss of motifs at different scales of interconnection.

Similar content being viewed by others

References

  1. Milo, R. et al. Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  ADS  Google Scholar 

  2. Alon, U. Network motifs: Theory and experimental approaches. Nature Rev. Genetics 8, 450–461 (2007).

    Article  Google Scholar 

  3. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

    Article  ADS  Google Scholar 

  4. Mangan, S., Zaslaver, A. & Alon, U. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334, 197–204 (2003).

    Article  Google Scholar 

  5. Prill, R. J., Iglesias, P. A. & Levchenko, A. Dynamic properties of network motifs contribute to biological network organization. PLoS Biol. 3, e343 (2005).

    Article  Google Scholar 

  6. Lodato, I., Boccaletti, S. & Latora, V. Synchronization properties of network motifs. Europhys. Lett. 78, 28001 (2007).

    Article  ADS  Google Scholar 

  7. Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).

    Article  Google Scholar 

  8. Shoval, O. et al. Fold-change detection and scalar symmetry of sensory input fields. Proc. Natl Acad. Sci. USA 107, 15995–16000 (2010).

    Article  ADS  Google Scholar 

  9. Rodrigo, G. & Elena, S. F. Structural discrimination of robustness in transcriptional feed-forward loops for pattern formation. PLoS ONE 6, e16904 (2011).

    Article  ADS  Google Scholar 

  10. Wang, P., Lu, J. & Ogorzalek, M. J. Global relative parameter sensitivities of the feedforward loops in genetic networks. Neurocomputing 78, 155–165 (2012).

    Article  Google Scholar 

  11. Hart, Y., Antebi, Y. E., Mayo, A. E., Friedman, N. & Alon, U. Design principles of cell circuits with paradoxical components. Proc. Natl Acad. Sci. USA 109, 8346–8351 (2012).

    Article  ADS  Google Scholar 

  12. Genot, A. J., Fujii, T. & Rondelez, Y. Computing with competition in biochemical networks. Phys. Rev. Lett. 109, 208102 (2012).

    Article  ADS  Google Scholar 

  13. Hart, Y. & Alon, U. The utility of paradoxical components in biological circuits. Mol. Cell 49, 213–221 (2013).

    Article  Google Scholar 

  14. Hart, Y., Mayo, A. E., Shoval, O. & Alon, U. Comparing apples and oranges: Fold-change detection of multiple simultaneous inputs. PLoS ONE 8, e57455 (2013).

    Article  ADS  Google Scholar 

  15. Adler, M., Mayo, A. & Alon, U. Logarithmic and power law input–output relations in sensory systems with fold-change detection. PLoS Comput. Biol. 10, e1003781 (2014).

    Article  ADS  Google Scholar 

  16. Bernstein, N. A. The Co-ordination and Regulation of Movements (Pergamon Press, 1967).

    Google Scholar 

  17. Bizzi, E., Giszter, S. F., Loeb, E., Mussa-Ivaldi, F. A. & Saltiel, P. Modular organization of motor behavior in the frog’s spinal cord. Trends Neurosci. 18, 442–446 (1995).

    Article  Google Scholar 

  18. LeDoux, J. The Emotional Brain: The Mysterious Underpinnings of Emotional Life (Simon and Schuster, 1998).

    Google Scholar 

  19. Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773–13778 (2005).

    Article  ADS  Google Scholar 

  20. Slotine, J.-J. & Lohmiller, W. Modularity, evolution, and the binding problem: A view from stability theory. Neural Netw. 14, 137–145 (2001).

    Article  Google Scholar 

  21. Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    Article  ADS  Google Scholar 

  22. Han, S. K., Kurrer, C. & Kuramoto, Y. Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75, 3190–3193 (1995).

    Article  ADS  Google Scholar 

  23. Campbell, S. & Wang, D. Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators. IEEE Trans. Neural Netw. 7, 541–554 (1996).

    Article  Google Scholar 

  24. Nakao, H. & Mikhailov, A. S. Turing patterns in network-organized activator-inhibitor systems. Nature Phys. 6, 544–550 (2010).

    Article  ADS  Google Scholar 

  25. Lohmiller, W. & Slotine, J.-J. E. On contraction analysis for non-linear systems. Automatica 34, 683–696 (1998).

    Article  MathSciNet  Google Scholar 

  26. Russo, G., di Bernardo, M. & Sontag, E. A contraction approach to the hierarchical analysis and design of networked systems. IEEE Trans. Autom. Control 58, 1328–1331 (2013).

    Article  Google Scholar 

  27. Kashtan, N., Itzkovitz, S., Milo, R. & Alon, U. Topological generalizations of network motifs. Phys. Rev. E 70, 031909 (2004).

    Article  ADS  Google Scholar 

  28. Simon, H. A. The architecture of complexity. Proc. Am. Phil. Soc. 106, 467–482 (1962).

    Google Scholar 

  29. Alon, U. Biological networks: The tinkerer as an engineer. Science 301, 1866–1867 (2003).

    Article  ADS  Google Scholar 

  30. Itzkovitz, S. et al. Coarse-graining and self-dissimilarity of complex networks. Phys. Rev. E 71, 016127 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A.-L. Barabási for valuable discussions. M.T.A. was supported by the CONACyT postdoctoral grant 207609, the ARL NS-CTA grant (W911NF-09-2-0053), and the DARPA grant (W911NF-12-C-002). Y.-Y.L. was supported in part by the John Templeton Foundation (award number 51977).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed and did the research. M.T.A. analysed the empirical data and did the analytical and numerical calculations. M.T.A. and Y.-Y.L. wrote the manuscript. J.-J.S. edited the manuscript.

Corresponding authors

Correspondence to Yang-Yu Liu or Jean-Jacques Slotine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 10470 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angulo, M., Liu, YY. & Slotine, JJ. Network motifs emerge from interconnections that favour stability. Nature Phys 11, 848–852 (2015). https://doi.org/10.1038/nphys3402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing