Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong mechanical driving of a single electron spin

Abstract

Quantum devices for sensing and computing applications require coherent quantum systems, which can be manipulated in fast and robust ways1. Such quantum control is typically achieved using external electromagnetic fields, which drive the system’s orbital2, charge3 or spin4,5 degrees of freedom. However, most existing approaches require complex and unwieldy gate structures, and with few exceptions6,7 are limited to the regime of weak coherent driving. Here, we present a novel approach to coherently drive a single electronic spin using internal strain fields8,9,10 in an integrated quantum device. Specifically, we employ time-varying strain in a diamond cantilever to induce long-lasting, coherent oscillations of an embedded nitrogen–vacancy (NV) centre spin. We perform direct spectroscopy of the phonon-dressed states emerging from this drive and observe hallmarks of the sought-after strong-driving regime6,11, where the spin rotation frequency exceeds the spin splitting. Furthermore, we employ our continuous strain driving to significantly enhance the NV’s spin coherence time12. Our room-temperature experiments thereby constitute an important step towards strain-driven, integrated quantum devices and open new perspectives to investigate unexplored regimes of strongly driven multilevel systems13 and exotic spin dynamics in hybrid spin-oscillator devices14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and strain-induced coherent spin drive.
Figure 2: Mechanically induced Autler–Townes effect probed by microwave spectroscopy.
Figure 3: Dressed-state spectroscopy of the strongly driven NV spin.
Figure 4: Protecting NV spin coherence by coherent strain driving.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  ADS  Google Scholar 

  3. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    Article  ADS  Google Scholar 

  4. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  Google Scholar 

  5. Dobrovitski, V., Fuchs, G., Falk, A., Santori, C. & Awschalom, D. Quantum control over single spins in diamond. Ann. Rev. Condens. Matter Phys. 4, 23–50 (2013).

    Article  ADS  Google Scholar 

  6. Oliver, W. D. et al. Mach-Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653–1657 (2005).

    Article  ADS  Google Scholar 

  7. London, P., Balasubramanian, P., Naydenov, B., McGuinness, L. P. & Jelezko, F. Strong driving of a single spin using arbitrarily polarized fields. Phys. Rev. A 90, 012302 (2014).

    Article  ADS  Google Scholar 

  8. MacQuarrie, E. R. et al. Coherent control of a nitrogen–vacancy center spin ensemble with a diamond mechanical resonator. Optica 2, 233–238 (2015).

    Article  ADS  Google Scholar 

  9. Teissier, J., Barfuss, A., Appel, P., Neu, E. & Maletinsky, P. Strain coupling of a nitrogen–vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 113, 020503 (2014).

    Article  ADS  Google Scholar 

  10. Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Jayich, A. C. B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nature Commun. 5, 4429 (2014).

    Article  ADS  Google Scholar 

  11. Silveri, M., Tuorila, J., Kemppainen, M. & Thuneberg, E. Probe spectroscopy of quasienergy states. Phys. Rev. B 87, 134505 (2013).

    Article  ADS  Google Scholar 

  12. Xu, X. et al. Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109, 070502 (2012).

    Article  ADS  Google Scholar 

  13. Danon, J. & Rudner, M. S. Multilevel interference resonances in strongly driven three-level systems. Phys. Rev. Lett. 113, 247002 (2014).

    Article  ADS  Google Scholar 

  14. Bennett, S. D. et al. Phonon-induced spin–spin interactions in diamond nanostructures: Application to spin squeezing. Phys. Rev. Lett. 110, 156402 (2013).

    Article  ADS  Google Scholar 

  15. Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

    Article  ADS  Google Scholar 

  16. Wilson-Rae, I., Zoller, P. & Imamoglu, A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004).

    Article  ADS  Google Scholar 

  17. MacQuarrie, E. R., Gosavi, T. A., Jungwirth, N. R., Bhave, S. A. & Fuchs, G. D. Mechanical spin control of nitrogen–vacancy centers in diamond. Phys. Rev. Lett. 111, 227602 (2013).

    Article  ADS  Google Scholar 

  18. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  19. Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    Article  ADS  Google Scholar 

  20. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions: Basic Processes and Applications (Wiley, 1992).

    Google Scholar 

  21. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2008).

    Article  ADS  Google Scholar 

  22. Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    Article  ADS  Google Scholar 

  23. Baur, M. et al. Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett. 102, 243602 (2009).

    Article  ADS  Google Scholar 

  24. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  ADS  Google Scholar 

  25. Dréau, A. et al. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011).

    Article  ADS  Google Scholar 

  26. Timoney, N. et al. Quantum gates and memory using microwave-dressed states. Nature 476, 185–188 (2011).

    Article  ADS  Google Scholar 

  27. Dolde, F. et al. Electric-field sensing using single diamond spins. Nature Phys. 7, 459–463 (2011).

    Article  ADS  Google Scholar 

  28. Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005).

    Article  ADS  Google Scholar 

  29. Buckle, S., Barnett, S., Knight, P., Lauder, M. & Pegg, D. Atomic interferometers. Opt. Acta 33, 1129–1140 (1986).

    Article  ADS  Google Scholar 

  30. Jundt, G., Robledo, L., Högele, A., Fält, S. & Imamoğlu, A. Observation of dressed excitonic states in a single quantum dot. Phys. Rev. Lett. 100, 177401 (2008).

    Article  ADS  Google Scholar 

  31. Kepesidis, K. V., Bennett, S. D., Portolan, S., Lukin, M. D. & Rabl, P. Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phys. Rev. B 88, 064105 (2013).

    Article  ADS  Google Scholar 

  32. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen–vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank V. Jacques for fruitful discussions, P. Appel for initial assistance with nanofabrication and L. Thiel for support with the experiment control software. We gratefully acknowledge financial support from SNI; NCCR QSIT; SNF grants 200021_143697; and EU FP7 grant 611143 (DIADEMS). A.N. holds a University Research Fellowship from the Royal Society and acknowledges support from the Winton Programme for the Physics of Sustainability.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and J.T. carried out the experiment and analysed the data. E.N. provided essential support in sample fabrication. A.N. provided theoretical support and modelled the data. All authors commented on the manuscript. P.M. wrote the manuscript, conceived the experiment and supervised the project.

Corresponding author

Correspondence to P. Maletinsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barfuss, A., Teissier, J., Neu, E. et al. Strong mechanical driving of a single electron spin. Nature Phys 11, 820–824 (2015). https://doi.org/10.1038/nphys3411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing