Abstract
How long must one undertake a random search to visit all sites of a given domain? This time, known as the cover time1, is a key observable to quantify the efficiency of exhaustive searches, which require a complete exploration of an area and not only the discovery of a single target. Examples range from immune-system cells chasing pathogens2 to animals harvesting resources3,4, from robotic exploration for cleaning or demining to the task of improving search algorithms5. Despite its broad relevance, the cover time has remained elusive and so far explicit results have been scarce and mostly limited to regular random walks6,7,8,9. Here we determine the full distribution of the cover time for a broad range of random search processes, including Lévy strategies10,11,12,13,14, intermittent strategies4,15,16, persistent random walks17 and random walks on complex networks18, and reveal its universal features. We show that for all these examples the mean cover time can be minimized, and that the corresponding optimal strategies also minimize the mean search time for a single target, unambiguously pointing towards their robustness.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Aldous, D. On the time taken by random walks on finite groups to visit every state. Z. für Wahrscheinlichkeitstheor. Verwandte Geb. 62, 361–374 (1983).
Heuzé, M. L. et al. Migration of dendritic cells: Physical principles, molecular mechanisms, and functional implications. Immunol. Rev. 256, 240–254 (2013).
Viswanathan, G. M., Raposo, E. P. & da Luz, M. G. E. Lévy flights and superdiffusion in the context of biological encounters and random searches. Phys. Life Rev. 5, 133–150 (2008).
Bénichou, O., Loverdo, C., Moreau, M. & Voituriez, R. Intermittent search strategies. Rev. Mod. Phys. 83, 81–129 (2011).
Vergassola, M., Villermaux, E. & Shraiman, B. I. Infotaxis as a strategy for searching without gradients. Nature 445, 406–409 (2007).
Brummelhuis, M. J. A. M. & Hilhorst, H. J. Covering of a finite lattice by a random walk. Physica A 176, 387–408 (1991).
Dembo, A., Peres, Y., Rosen, J. & Zeitouni, O. Cover times for Brownian motion and random walks in two dimensions. Ann. Math. 160, 433–464 (2004).
Ding, J. On cover times for 2D lattices. Electron. J. Probab. 17, 45 (2012).
Belius, D. Gumbel fluctuations for cover times in the discrete torus. Probab. Theory Relat. Fields 157, 635–689 (2013).
Shlesinger, M. F. & Klafter, J. in Lévy Walks vs Lévy Flights (eds Stanley, H. E. & Ostrowski, N.) 279–283 (Springer, 1986).
Viswanathan, G. M. et al. Levy flight search patterns of wandering albatrosses. Nature 381, 413–415 (1996).
Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999).
Metzler, R. & Klafter, J. The random walk’s guide to anomalous diffusion: A fractionnal dynamics approach. Phys. Rep. 339, 1–77 (2000).
Lomholt, M. A., Tal, K., Metzler, R. & Joseph, K. Lévy strategies in intermittent search processes are advantageous. Proc. Natl Acad. Sci. USA 105, 11055–11059 (2008).
Benichou, O., Coppey, M., Moreau, M., Suet, P.-H. & Voituriez, R. Optimal search strategies for hidden targets. Phys. Rev. Lett. 94, 198101 (2005).
Oshanin, G., Wio, H. S., Lindenberg, K. & Burlatsky, S. F. Intermittent random walks for an optimal search strategy: One-dimensional case. J. Phys.: Condens. Matter 19, 065142 (2007).
Tejedor, V., Voituriez, R. & Bénichou, O. Optimizing persistent random searches. Phys. Rev. Lett. 108, 088103 (2012).
Condamin, S., Benichou, O., Tejedor, V., Voituriez, R. & Klafter, J. First-passage times in complex scale-invariant media. Nature 450, 77–80 (2007).
Redner, S. A Guide to First-Passage Processes (Cambridge Univ. Press, 2001).
Bénichou, O., Chevalier, C., Klafter, J., Meyer, B. & Voituriez, R. Geometry-controlled kinetics. Nature Chem. 2, 472–477 (2010).
Bénichou, O. & Voituriez, R. From first-passage times of random walks in confinement to geometry-controlled kinetics. Phys. Rep. 539, 225–284 (2014).
Bray, A. J., Majumdar, S. N. & Schehr, G. Persistence and first-passage properties in nonequilibrium systems. Adv. Phys. 62, 225–361 (2013).
Aldous, D. An introduction to covering problems for random walks on graphs. J. Theor. Probab. 2, 87–89 (1989).
Weiss, G. & Shlesinger, M. On the expected number of distinct points in a subset visited by ann-step random walk. J. Stat. Phys. 27, 355–363 (1982).
Burov, S. & Barkai, E. Weak subordination breaking for the quenched trap model. Phys. Rev. E 86, 041137 (2012).
Yokoi, C. S. O., Hernández-Machado, A. & Ramírez-Piscina, L. Some exact results for the lattice covering time problem. Phys. Lett. A 145, 82–86 (1990).
Nemirovsky, A. M., Mártin, H. O. & Coutinho-Filho, M. D. Universality in the lattice-covering time problem. Phys. Rev. A 41, 761–767 (1990).
Hughes, B. Random Walks and Random Environments (Oxford Univ. Press, 1995).
Meyer, B., Chevalier, C., Voituriez, R. & Bénichou, O. Universality classes of first-passage-time distribution in confined media. Phys. Rev. E 83, 051116 (2011).
Bénichou, O., Chevalier, C., Meyer, B. & Voituriez, R. Facilitated diffusion of proteins on chromatin. Phys. Rev. Lett. 106, 038102 (2011).
Albert, R. & Barabasi, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2001).
Benichou, O., Moreau, M., Suet, P.-H. & Voituriez, R. Intermittent search process and teleportation. J. Chem. Phys. 126, 234109 (2007).
Acknowledgements
O.B. was supported by ERC grant FPTOpt-277998.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 520 kb)
Rights and permissions
About this article
Cite this article
Chupeau, M., Bénichou, O. & Voituriez, R. Cover times of random searches. Nature Phys 11, 844–847 (2015). https://doi.org/10.1038/nphys3413
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys3413
This article is cited by
-
In vivo tracking of functionally tagged Rad51 unveils a robust strategy of homology search
Nature Structural & Molecular Biology (2023)
-
Impact of global structure on diffusive exploration of organelle networks
Scientific Reports (2020)
-
Online games: a novel approach to explore how partial information influences human random searches
Scientific Reports (2017)
-
Fuzzing binaries with Lévy flight swarms
EURASIP Journal on Information Security (2016)