Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films

Subjects

Abstract

Proposals for novel spin-orbitronic logic1 and memory devices2 are often predicated on assumptions as to how materials with large spin–orbit coupling interact with ferromagnets when in contact. Such interactions give rise to a host of novel phenomena, such as spin–orbit torques3,4, chiral spin structures5,6 and chiral spin torques7,8. These chiral properties are related to the antisymmetric exchange, also referred to as the interfacial Dzyaloshinskii–Moriya interaction (DMI; refs 9, 10). For numerous phenomena, the relative strengths of the symmetric Heisenberg exchange and the DMI are of great importance. Here, we use optical spin-wave spectroscopy (Brillouin light scattering) to directly determine the volume-averaged DMI vector D for a series of Ni80Fe20/Pt thin films, and then compare the nearest-neighbour DMI coupling energy with an independently measured value of the Heisenberg exchange for each sample. We show that the dependence on Ni80Fe20 thickness of both the microscopic symmetric and antisymmetric exchange are nearly identical, consistent with the notion that the fundamentals of the DMI and Heisenberg exchange essentially share the same underlying physics, albeit with different symmetries, as was originally proposed by Moriya11 for superexchange in magnetic oxides, and by Fert and Levy12 for RKKY coupling in metallic spin glasses. Indeed, our result demonstrates the generality of the original DMI theory, insofar as the proportionality of the symmetric and antisymmetric exchange is robust with regard to the details of spin coupling for the material system in question. Although of significant fundamental importance, this result also leads us to a deeper understanding of DMI and how it could be optimized for spin-orbitronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modification of spin-wave propagation in the presence of interfacial DMI.
Figure 2: Normalized spin-wave spectra, as measured by BLS.
Figure 3: DMI-induced spin-wave frequency shift.
Figure 4: Thickness dependence of the symmetric and the antisymmetric exchange.

Similar content being viewed by others

References

  1. Bhowmik, D., You, L. & Salahuddin, S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nature Nanotech. 9, 59–63 (2013).

    Article  ADS  Google Scholar 

  2. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  ADS  Google Scholar 

  3. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  ADS  Google Scholar 

  4. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  ADS  Google Scholar 

  5. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    Article  ADS  Google Scholar 

  6. Chen, G. et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nature Commun. 4, 2671 (2013).

    Article  ADS  Google Scholar 

  7. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nature Nanotech. 8, 527–533 (2013).

    Article  ADS  Google Scholar 

  8. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

    Article  ADS  Google Scholar 

  9. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  ADS  Google Scholar 

  10. Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960).

    Article  ADS  Google Scholar 

  11. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  ADS  Google Scholar 

  12. Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  ADS  Google Scholar 

  13. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  14. Ferriani, P. et al. Atomic-scale spin spiral with a unique rotational sense: Mn monolayer on W(001). Phys. Rev. Lett. 101, 027201 (2008).

    Article  ADS  Google Scholar 

  15. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  ADS  Google Scholar 

  16. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    Article  ADS  Google Scholar 

  17. Kim, K.-W., Lee, H.-W., Lee, K.-J. & Stiles, M. D. Chirality from interfacial spin–orbit coupling effects in magnetic bilayers. Phys. Rev. Lett. 111, 216601 (2013).

    Article  ADS  Google Scholar 

  18. Dmitrienko, V. E. et al. Measuring the Dzyaloshinskii–Moriya interaction in a weak ferromagnet. Nature Phys. 10, 202–206 (2014).

    Article  ADS  Google Scholar 

  19. Zakeri, K. et al. Asymmetric spin-wave dispersion on Fe(110): Direct evidence of the Dzyaloshinskii–Moriya interaction. Phys. Rev. Lett. 104, 137203 (2010).

    Article  ADS  Google Scholar 

  20. Franken, J. H., Herps, M., Swagten, H. J. M. & Koopmans, B. Tunable chiral spin texture in magnetic domain-walls. Sci. Rep. 4, 5248 (2014).

    Article  ADS  Google Scholar 

  21. Je, S.-G. et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 214401 (2013).

    Article  ADS  Google Scholar 

  22. Moon, J.-H. et al. Spin-wave propagation in the presence of interfacial Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184404 (2013).

    Article  ADS  Google Scholar 

  23. Kostylev, M. Interface boundary conditions for dynamic magnetization and spin wave dynamics in a ferromagnetic layer with the interface Dzyaloshinskii–Moriya interaction. J. Appl. Phys. 115, 233902 (2014).

    Article  ADS  Google Scholar 

  24. Costa, A. T., Muniz, R. B., Lounis, S., Klautau, A. B. & Mills, D. L. Spin–orbit coupling and spin waves in ultrathin ferromagnets: The spin-wave Rashba effect. Phys. Rev. B 82, 014428 (2010).

    Article  ADS  Google Scholar 

  25. Udvardi, L. & Szunyogh, L. Chiral asymmetry of the spin-wave spectra in ultrathin magnetic films. Phys. Rev. Lett. 102, 207204 (2009).

    Article  ADS  Google Scholar 

  26. Cortés-Ortuño, D. & Landeros, P. Influence of the Dzyaloshinskii–Moriya interaction on the spin-wave spectra of thin films. J. Phys. Condens. Matter 25, 156001 (2013).

    Article  ADS  Google Scholar 

  27. Hillebrands, B. Spin-wave calculations for multilayered structures. Phys. Rev. B 41, 530–540 (1990).

    Article  ADS  Google Scholar 

  28. Fert, A. Magnetic and transport properties of metallic multilayers. Mater. Sci. Forum 59–60, 439–480 (1990).

    Google Scholar 

  29. Vaz, C. a. F., Bland, J. a. C. & Lauhoff, G. Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501 (2008).

    Article  ADS  Google Scholar 

  30. Demokritov, S. & Tsymbal, E. Light scattering from spin waves in thin films and layered systems. J. Phys. Condens. Matter 6, 7145–7188 (1994).

    Article  ADS  Google Scholar 

  31. Stamps, R. L. & Hillebrands, B. Dipolar interactions and the magnetic behaviour of two-dimensional ferromagnetic systems. Phys. Rev. B 44, 12417–12423 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ward Johnson for his support of our BLS measurements, and thank M. Stiles and R. McMichael for stimulating discussions. M.W. acknowledges a stipend by the German academic exchange service (DAAD).

Author information

Authors and Affiliations

Authors

Contributions

H.T.N. conceived the experiment, performed the BLS measurements and analysed the BLS data. J.M.S. fabricated and characterized the samples and performed SQUID measurements, M.W. performed the FMR measurements and analysis. All authors contributed to the interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to Hans T. Nembach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nembach, H., Shaw, J., Weiler, M. et al. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nature Phys 11, 825–829 (2015). https://doi.org/10.1038/nphys3418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing