Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2

Abstract

The recently discovered monolayer transition metal dichalcogenides (TMDCs) provide a fertile playground to explore new coupled spin–valley physics1,2,3. Although robust spin and valley degrees of freedom are inferred from polarized photoluminescence (PL) experiments4,5,6,7,8, PL timescales are necessarily constrained by short-lived (3–100 ps) electron–hole recombination9,10. Direct probes of spin/valley polarization dynamics of resident carriers in electron (or hole)-doped TMDCs, which may persist long after recombination ceases, are at an early stage11,12,13. Here we directly measure the coupled spin–valley dynamics in electron-doped MoS2 and WS2 monolayers using optical Kerr spectroscopy, and reveal very long electron spin lifetimes, exceeding 3 ns at 5 K (two to three orders of magnitude longer than typical exciton recombination times). In contrast with conventional III–V or II–VI semiconductors, spin relaxation accelerates rapidly in small transverse magnetic fields. Supported by a model of coupled spin–valley dynamics, these results indicate a novel mechanism of itinerant electron spin dephasing in the rapidly fluctuating internal spin–orbit field in TMDCs, driven by fast inter-valley scattering. Additionally, a long-lived spin coherence is observed at lower energies, commensurate with localized states. These studies provide insight into the physics underpinning spin and valley dynamics of resident electrons in atomically thin TMDCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-lived electron spin dynamics in n-type MoS2 at 5 K.
Figure 2: Spectral dependence of the optically induced Kerr rotation/ellipticity signals in monolayer MoS2.
Figure 3: Temperature dependence of electron spin relaxation in monolayer MoS2 at zero magnetic field.
Figure 4: Long-lived spin polarization dynamics in monolayer WS2 at 5 K.

Similar content being viewed by others

References

  1. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  2. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    Article  ADS  Google Scholar 

  3. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  4. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  5. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Google Scholar 

  6. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  7. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301(R) (2012).

    Article  ADS  Google Scholar 

  8. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    Article  ADS  Google Scholar 

  9. Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phys. Rev. Lett. 112, 047401 (2014).

    Article  ADS  Google Scholar 

  10. Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 . Phys. Rev. B 90, 075413 (2014).

    Article  ADS  Google Scholar 

  11. Zhu, C. R. et al. Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 90, 161302(R) (2014).

    Article  ADS  Google Scholar 

  12. Plechinger, G., Nagler, P., Schuller, C. & Korn, T. Time-resolved Kerr rotation spectroscopy of valley dynamics in single-layer MoS2. Preprint at http://arxiv.org/abs/1404.7674 (2014)

  13. Dal Conte, S. M. et al. Valley and spin dynamics in monolayer MoS2. Preprint at http://xxx.tau.ac.il/abs/1502.06817 (2015)

  14. Meier, F. & Zakharchenya, B. P. (eds) Optical Orientation: Modern Problems in Condensed Matter Sciences Vol. 8 (North-Holland, 1984).

  15. Awschalom, D. D., Loss, D. & Samarth, N. (eds) in Semiconductor Spintronics and Quantum Computation (Nanoscience and Technology Series, Springer, 2002).

  16. Kikkawa, J. M., Smorchkova, I. P., Samarth, N. & Awschalom, D. D. Room-temperature spin memory in two-dimensional electron gases. Science 277, 1284–1287 (1997).

    Article  Google Scholar 

  17. Najmaei, S. et al. Vapor phase growth and grain boundary structure of molybdenum disulfide atomic layers. Nature Mater. 12, 754–759 (2013).

    Article  ADS  Google Scholar 

  18. Mai, C. et al. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2 . Nano Lett. 14, 202–206 (2014).

    Article  ADS  Google Scholar 

  19. Singh, A. et al. Coherent electronic coupling in atomically thin MoSe2 . Phys. Rev. Lett. 112, 216804 (2014).

    Article  ADS  Google Scholar 

  20. Dzhioev, R. I. et al. Low-temperature spin relaxation in n-type GaAs. Phys. Rev. B 66, 245204 (2002).

    Article  ADS  Google Scholar 

  21. Furis, M. et al. Local Hanle-effect studies of spin drift and diffusion in n:GaAs epilayers and spin-transport devices. New J. Phys. 9, 347 (2009).

    Article  Google Scholar 

  22. Kormányos, A. et al. Monolayer MoS2: Trigonal warping, the Γ valley, and spin–orbit coupling effects. Phys. Rev. B 88, 045416 (2013).

    Article  ADS  Google Scholar 

  23. Kośmider, K., González, J. W. & Fernández-Rossier, J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 88, 245436 (2013).

    Article  ADS  Google Scholar 

  24. Tse, W.-K., Saxena, A., Smith, D. L. & Sinitsyn, N. A. Spin and valley noise in two-dimensional Dirac materials. Phys. Rev. Lett. 113, 046602 (2014).

    Article  ADS  Google Scholar 

  25. Li, P. K., Li, J., Qing, L., Dery, H. & Appelbaum, I. Anisotropy-driven spin relaxation in germanium. Phys. Rev. Lett. 111, 257204 (2013).

    Article  ADS  Google Scholar 

  26. Ochoa, H. & Roldan, R. Spin-orbit-mediated spin relaxation in monolayer MoS2 . Phys. Rev. B 87, 245421 (2013).

    Article  ADS  Google Scholar 

  27. Wang, L. & Wu, M. W. Electron spin relaxation due to D’yakonov-Perel’ and Elliot-Yafet mechanisms in monolayer MoS2: Role of intravalley and intervalley processes. Phys. Rev. B 89, 115302 (2014).

    Article  ADS  Google Scholar 

  28. Song, Y. & Dery, H. Transport theory of monolayer transition-metal dichalcogenides through symmetry. Phys. Rev. Lett. 111, 026601 (2013).

    Article  ADS  Google Scholar 

  29. Zhukov, E. A. et al. Spin coherence of a two-dimensional electron gas induced by resonant excitation of trions and excitons in CdTe/(Cd, Mg)Te quantum wells. Phys. Rev. B 76, 205310 (2007).

    Article  ADS  Google Scholar 

  30. Chen, Z., Carter, S. G., Bratschitsch, R. & Cundiff, S. T. Optical excitation and control of electron spins in semiconductor quantum wells. Physica E 42, 1803–1819 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge D. L. Smith and H. Dery for helpful discussions, and W. D. Rice for laser expertise. This work was supported by the Los Alamos LDRD programme. These optical studies were performed at the National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490 and the State of Florida. We also acknowledge the support from AFOSR (grant FA9550-14-1-0268) and the Welch Foundation (grant C1716).

Author information

Authors and Affiliations

Authors

Contributions

L.Y. and S.A.C. conceived and built the experiments. W.C., J.Y., J.Z. and J.L. grew the samples. L.Y. performed the optical measurements. N.A.S. provided theoretical insight. L.Y., N.A.S. and S.A.C. wrote the paper in consultation with all authors.

Corresponding author

Correspondence to Scott A. Crooker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Sinitsyn, N., Chen, W. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nature Phys 11, 830–834 (2015). https://doi.org/10.1038/nphys3419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing