Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Weyl semimetal phase in the non-centrosymmetric compound TaAs

An Erratum to this article was published on 01 October 2015

This article has been updated

Abstract

Three-dimensional (3D) topologicalWeyl semimetals (TWSs) represent a state of quantum matter with unusual electronic structures that resemble both a ‘3D graphene’ and a topological insulator. Their electronic structure displays pairs of Weyl points (through which the electronic bands disperse linearly along all three momentum directions) connected by topological surface states, forming a unique arc-like Fermi surface (FS). Each Weyl point is chiral and contains half the degrees of freedom of a Dirac point, and can be viewed as a magnetic monopole in momentum space. By performing angle-resolved photoemission spectroscopy on the non-centrosymmetric compound TaAs, here we report its complete band structure, including the unique Fermi-arc FS and linear bulk band dispersion across the Weyl points, in agreement with the theoretical calculations1,2. This discovery not only confirms TaAs as a 3DTWS, but also provides an ideal platform for realizing exotic physical phenomena (for example, negative magnetoresistance, chiral magnetic effects and the quantum anomalous Hall effect) which may also lead to novel future applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic characteristics of the TWS and characterization of TaAs single crystals.
Figure 2: General FS geometry and band evolution with binding energy.
Figure 3: Observation of the Fermi-arc FS on (001) surface.
Figure 4: Bulk band structure of TaAs.

Similar content being viewed by others

Change history

  • 03 September 2015

    In the version of this Letter originally published a description of arc-like Fermi surfaces in the abstract contained a typographical error. This error has been corrected in the online versions.

References

  1. Weng, H., Fang, C., Fang, Z., Bernevig, A. & Dai, X. Weyl semimetal phase in non-centrosymmetric transition metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  2. Huang, S.-M. et al. An inversion breaking Weyl semimetal state in the TaAs material class. Nature Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  3. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  4. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  5. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  ADS  Google Scholar 

  6. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  ADS  Google Scholar 

  7. Dziawa, P. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nature Mater. 11, 1023–1027 (2012).

    Article  ADS  Google Scholar 

  8. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  9. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  ADS  Google Scholar 

  10. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  11. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  12. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  13. Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).

    Article  ADS  Google Scholar 

  14. Liu, C.-X., Ye, P. & Qi, X.-L. Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B 87, 235306 (2013).

    Article  ADS  Google Scholar 

  15. Landsteiner, K. Anomalous transport of Weyl fermions in Weyl semimetals. Phys. Rev. B 89, 075124 (2014).

    Article  ADS  Google Scholar 

  16. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nature Commun. 5, 5161 (2014).

    Article  ADS  Google Scholar 

  17. Hosur, P. Friedel oscillations due to Fermi arcs in Weyl semimetals. Phys. Rev. B 86, 195102 (2012).

    Article  ADS  Google Scholar 

  18. Halász, G. B. & Balents, L. Time-reversal invariant realization of the Weyl semimetal phase. Phys. Rev. B 85, 035103 (2012).

    Article  ADS  Google Scholar 

  19. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 . Nature Mater. 13, 677–681 (2014).

    Article  ADS  Google Scholar 

  20. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nature Commun. 5, 3786 (2014).

    Article  ADS  Google Scholar 

  21. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Article  ADS  Google Scholar 

  22. Liu, J. & Vanderbilt, D. Weyl semimetals from noncentrosymmetric topological insulators. Phys. Rev. B 90, 155316 (2014).

    Article  ADS  Google Scholar 

  23. Furuseth, S., Selte, K. & Kjekshus, A. On the arsenides and antimonides of tantalum. Acta Chem. Scand. 19, 95–106 (1965).

    Article  Google Scholar 

  24. Chen, Y. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy. Front. Phys. 7, 175–192 (2012).

    Article  Google Scholar 

  25. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 . Nature Mater. 14, 280–284 (2015).

    Article  ADS  Google Scholar 

  26. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Phys. 11, 645–649 (2015).

    Article  ADS  Google Scholar 

  27. Xu, S.-Y. et al. Discovery of a Weyl Fermion semimetal and topological Fermi arcs. Sciencehttp://dx.doi.org/10.1126/science.aaa9297 (2015).

  28. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  29. Lu, L. et al. Experimental observation of Weyl points. Sciencehttp://dx.doi.org/10.1126/science.aaa9273 (2015).

  30. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  31. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  32. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y.L.C. acknowledges the support from the EPSRC (UK) grant EP/K04074X/1 and a DARPA (US) MESO project (no. N66001-11-1-4105). The Advanced Light Source is operated by the Department of Energy, Office of Basic Energy Science (contract DE-AC02-05CH11231).

Author information

Authors and Affiliations

Contributions

Y.L.C. conceived the experiments. L.X.Y. and Z.K.L. carried out ARPES measurements with the assistance of H.P., H.F.Y., T.Z., B.Z., Y.Z. and S.-K.M. D.P., Y.F.G. and M.R. synthesized and characterized bulk single crystals. B.Y. and Y.S. performed ab initio calculations. All authors contributed to the scientific planning and discussions.

Corresponding author

Correspondence to Y. L. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Liu, Z., Sun, Y. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nature Phys 11, 728–732 (2015). https://doi.org/10.1038/nphys3425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3425

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing