Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Attosecond tunnelling interferometry

Abstract

Attosecond physics offers new insights into ultrafast quantum phenomena involving electron dynamics on the fastest measurable timescales. The rapid progress in this field enables us to re-visit one of the most fundamental strong-field phenomena: field-induced tunnel ionization1,2,3. In this work, we employ high-harmonic generation to probe the electron wavefunction during field-induced tunnelling through a potential barrier. By using a combination of strong and weak driving laser fields, we modulate the atomic potential barrier on optical subcycle timescales. This induces a temporal interferometer between attosecond bursts originating from consecutive laser half-cycles. Our study provides direct insight into the basic properties of field-induced tunnelling, following the evolution of the electronic wavefunction within a temporal window of approximately 200 attoseconds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interferometry of tunnelling electrons.
Figure 2: Interference phase.
Figure 3: The reconstruction of stationary parameters.

Similar content being viewed by others

References

  1. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    Article  ADS  Google Scholar 

  2. Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    Article  ADS  Google Scholar 

  3. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    Article  ADS  Google Scholar 

  4. Sokolovski, D. & Baskin, L. Traversal time in quantum scattering. Phys. Rev. A 36, 4604–4611 (1987).

    Article  ADS  Google Scholar 

  5. Landauer, R. & Martin, T. Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217–228 (1994).

    Article  ADS  Google Scholar 

  6. Keldysh, L. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  7. Corkum, P. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    Article  ADS  Google Scholar 

  8. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  9. Fittinghoff, D. N., Bolton, P. R., Chang, B. & Kulander, K. C. Observation of nonsequential double ionization of helium with optical tunneling. Phys. Rev. Lett. 69, 2642–2645 (1992).

    Article  ADS  Google Scholar 

  10. Arissian, L. et al. Direct test of laser tunneling with electron momentum imaging. Phys. Rev. Lett. 105, 133002 (2010).

    Article  ADS  Google Scholar 

  11. Serbinenko, V. & Smirnova, O. Multidimensional high harmonic spectroscopy: A semi-classical perspective on measuring multielectron rearrangement upon ionization. J. Phys. B 46, 171001 (2013).

    Article  ADS  Google Scholar 

  12. Litvinyuk, I. V. et al. Shakeup excitation during optical tunnel ionization. Phys. Rev. Lett. 94, 033003 (2005).

    Article  ADS  Google Scholar 

  13. Bryan, W. et al. Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization. Nature Phys. 2, 379–383 (2006).

    Article  ADS  Google Scholar 

  14. Büttiker, M. & Landauer, R. Traversal time for tunneling. Phys. Rev. Lett. 49, 1739–1742 (1982).

    Article  ADS  Google Scholar 

  15. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

    Article  ADS  Google Scholar 

  16. Steinberg, A. M., Kwiat, P. G. & Chiao, R. Y. Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708–711 (1993).

    Article  ADS  Google Scholar 

  17. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  18. Dahlström, J., L’Huillier, A. & Mauritsson, J. Quantum mechanical approach to probing the birth of attosecond pulses using a two-colour field. J. Phys. B 44, 095602 (2011).

    Article  ADS  Google Scholar 

  19. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  20. Salières, P. et al. Feynman’s path-integral approach for intense-laser-atom interactions. Science 292, 902–905 (2001).

    Article  ADS  Google Scholar 

  21. Soifer, H. et al. Spatio-spectral analysis of ionization times in high-harmonic generation. Chem. Phys. 414, 176–183 (2013).

    Article  Google Scholar 

  22. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  23. Zhao, J. & Lein, M. Determination of ionization and tunneling times in high-order harmonic generation. Phys. Rev. Lett. 111, 043901 (2013).

    Article  ADS  Google Scholar 

  24. Torlina, L. & Smirnova, O. Time-dependent analytical R-matrix approach for strong-field dynamics. II. One-electron systems. Phys. Rev. A 86, 043408 (2012).

    Article  ADS  Google Scholar 

  25. Ivanov, M. Y., Spanner, M. & Smirnova, O. Anatomy of strong field ionization. J. Mod. Opt. 52, 165–184 (2005).

    Article  ADS  Google Scholar 

  26. Mairesse, Y. et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phys. Rev. Lett. 104, 213601 (2010).

    Article  ADS  Google Scholar 

  27. Rohringer, N. & Santra, R. Multichannel coherence in strong-field ionization. Phys. Rev. A 79, 053402 (2009).

    Article  ADS  Google Scholar 

  28. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  29. Torlina, L., Ivanov, M., Walters, Z. B. & Smirnova, O. Time-dependent analytical R-matrix approach for strong-field dynamics. II. Many-electron systems. Phys. Rev. A 86, 043409 (2012).

    Article  ADS  Google Scholar 

  30. Weinkauf, R., Schlag, E., Martinez, T. & Levine, R. Nonstationary electronic states and site-selective reactivity. J. Phys. Chem. A 101, 7702–7710 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank O. Raz, J. M. Dahlström and M. Yu. Ivanov for valuable discussions. N.D. is the incumbent of the Robin Chemers Neustein Professorial Chair. N.D. acknowledges the Minerva Foundation, the Israeli Science Foundation, the Crown Center of Photonics and the European Research Council for financial support. N.D. and O.S. acknowledge the German-Israeli Foundation. L.T. and O.S. acknowledge the support of DFG grant SM 292/2-3. F.M. and O.S. acknowledge the support of the DFG grant SM 292/3-1. D.S.B. and O.S. acknowledge the support of Einstein foundation project A-211-55 Attosecond Electron Dynamics.

Author information

Authors and Affiliations

Authors

Contributions

O.P., G.O., H.S., B.D.B. and A.J.U. performed the experiments. O.P., G.O., F.M., O.S. and N.D. analysed and interpreted the data. Simulations were implemented by O.P., V.S., A.G.H., D.S.B. and F.M. This project was supervised by N.D. and O.S. All authors discussed the results and wrote the paper.

Corresponding authors

Correspondence to O. Pedatzur, O. Smirnova or N. Dudovich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2672 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedatzur, O., Orenstein, G., Serbinenko, V. et al. Attosecond tunnelling interferometry. Nature Phys 11, 815–819 (2015). https://doi.org/10.1038/nphys3436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3436

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing