Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Avalanche outbreaks emerging in cooperative contagions

Abstract

The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population1,2. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs 3, 4), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases5,6,7. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition8. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of co-epidemic spreading process on a complex network.
Figure 2: Hybrid phase transition on Erdős–Rényi networks with mean degree 〈k〉 = 4.
Figure 3: Dependence of transition order on dimensionality.
Figure 4: Critical dimension for co-epidemics on lattices.

Similar content being viewed by others

References

  1. Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor & Francis, 1994).

    MATH  Google Scholar 

  2. Newman, M. Networks: An Introduction (Oxford Univ. Press, 2010).

    Book  Google Scholar 

  3. Brundage, J. F. & Shanks, G. D. Deaths from bacterial pneumonia during 1918–19 influenza pandemic. Emerg. Infect. Dis. 14, 1193–1199 (2008).

    Article  Google Scholar 

  4. Taubenberger, J. & Morens, D. 1918 Influenza: The mother of all pandemics. Emerg. Infect. Dis. 12, 15–22 (2006).

    Article  Google Scholar 

  5. Pawlowski, A., Jansson, M., Skold, M., Rottenberg, M. E. & Kallenius, G. Tuberculosis and HIV co-infection. PLoS Pathogens 8, e1002464 (2012).

    Article  Google Scholar 

  6. Chang, C. C. et al. HIV and co-infections. Immun. Rev. 254, 114–142 (2013).

    Article  Google Scholar 

  7. Petney, T. & Andrews, R. Multiparasite communities in animals and humans: Frequency, structure and pathogenic significance. Int. J. Parasitol. 28, 377–393 (1998).

    Article  Google Scholar 

  8. Goltsev, A. V., Dorogovtsev, S. N. & Mendes, J. K-core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects. Phys. Rev. E 73, 056101 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  9. Claessens, S. & Forbes, K. (eds) International Financial Contagion: An Overview of the Issues (Springer, 2009).

    Google Scholar 

  10. Davis, S., Trapman, P., Leirs, H., Begon, M. & Heesterbeek, J. The abundance threshold for plague as a critical percolation phenomenon. Nature 454, 634–637 (2008).

    Article  ADS  Google Scholar 

  11. Wang, P., González, M. C., Hidalgo, C. A. & Barabási, A. L. Understanding the spreading patterns of mobile phone viruses. Science 324, 1071–1076 (2009).

    Article  ADS  Google Scholar 

  12. Barrat, A., Barthelemy, M. & Vespignani, A. Dynamical Processes on Complex Networks (Cambridge Univ. Press, 2008).

    Book  Google Scholar 

  13. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    Article  ADS  Google Scholar 

  14. Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nature Phys. 8, 40–48 (2012).

    Article  ADS  Google Scholar 

  15. Li, D. et al. Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proc. Natl Acad. Sci. USA 112, 669–672 (2014).

    Article  ADS  Google Scholar 

  16. Dodds, P. S. & Watts, D. J. Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92, 218701 (2004).

    Article  ADS  Google Scholar 

  17. Pruppacher, H., Klett, J. & Wang, P. Microphysics of Clouds and Precipitation (Taylor & Francis, 1998).

    Google Scholar 

  18. Ma, S. K. Modern Theory of Critical Phenomena (Westview Press, 2000).

    Google Scholar 

  19. Watts, D. J. & Strogatz, S. H. Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998).

    Article  ADS  Google Scholar 

  20. Newman, M. E. J. & Watts, D. J. Scaling and percolation in the small-world network model. Phys. Rev. E 60, 7332–7342 (1999).

    Article  ADS  Google Scholar 

  21. Janssen, H.-K., Müller, M. & Stenull, O. Generalized epidemic process and tricritical dynamic percolation. Phys. Rev. E 70, 026114 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  22. Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  23. Parshani, R., Buldyrev, S. V. & Havlin, S. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010).

    Article  ADS  Google Scholar 

  24. Achlioptas, D., D’Souza, R. M. & Spencer, J. Explosive percolation in random networks. Science 323, 1453–1455 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  25. da Costa, R. A., Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Explosive percolation transition is actually continuous. Phys. Rev. Lett. 105, 255701 (2010).

    Article  ADS  Google Scholar 

  26. Riordan, O. & Warnke, L. Explosive percolation is continuous. Science 333, 322–324 (2011).

    Article  ADS  Google Scholar 

  27. Grassberger, P., Christensen, C., Bizhani, G., Son, S. W. & Paczuski, M. Explosive percolation is continuous, but with unusual finite size behavior. Phys. Rev. Lett. 106, 225701 (2011).

    Article  ADS  Google Scholar 

  28. Araújo, N. A. M. & Herrmann, H. J. Explosive percolation via control of the largest cluster. Phys. Rev. Lett. 105, 035701 (2010).

    Article  ADS  Google Scholar 

  29. Axelrod, R. The Evolution of Cooperation (Basic Books, 1984).

    MATH  Google Scholar 

  30. Suri, S. & Watts, D. Cooperation and contagion in web-based, networked public goods experiments. PLoS ONE 6, e16836 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Brockmann and W. Nadler for discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the research, carried out numerical experiments, analysed the data, worked out the mechanism and wrote the manuscript.

Corresponding author

Correspondence to Weiran Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Chen, L., Ghanbarnejad, F. et al. Avalanche outbreaks emerging in cooperative contagions. Nature Phys 11, 936–940 (2015). https://doi.org/10.1038/nphys3457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing