Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot

Abstract

The control of solid-state qubits requires a detailed understanding of the decoherence mechanisms. Despite considerable progress in uncovering the qubit dynamics in strong magnetic fields1,2,3,4, decoherence at very low magnetic fields remains puzzling, and the role of quadrupole coupling of nuclear spins is poorly understood. For spin qubits in semiconductor quantum dots, phenomenological models of decoherence include two basic types of spin relaxation5,6,7: fast dephasing due to static but randomly distributed hyperfine fields (2 ns)8,9,10,11 and a much slower process (>1 μs) of irreversible monotonic relaxation due either to nuclear spin co-flips or other complex many-body interaction effects12. Here we show that this is an oversimplification; the spin qubit relaxation is determined by three rather than two distinct stages. The additional stage corresponds to the effect of coherent precession processes that occur in the nuclear spin bath itself, leading to a relatively fast but incomplete non-monotonic relaxation at intermediate timescales (750 ns).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single electron spin preparation, storage and read-out.
Figure 2: Dynamics of the electron spin relaxation.
Figure 3: Evolution of the electron spin in an in-plane magnetic field.

Similar content being viewed by others

References

  1. Cywinski, L., Witzel, W. M. & Das Sarma, S. Electron spin dephasing due to hyperfine interactions with a nuclear spin bath. Phys. Rev. Lett. 102, 057601 (2009).

    Article  ADS  Google Scholar 

  2. Witzel, W. M. & Das Sarma, S. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006).

    Article  ADS  Google Scholar 

  3. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2010).

    Article  ADS  Google Scholar 

  4. Zhao, N., Ho, S.-W. & Liu, R.-B. Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Phys. Rev. B 85, 115303 (2012).

    Article  ADS  Google Scholar 

  5. Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  ADS  Google Scholar 

  6. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  7. Al-Hassanieh, K. A., Dobrovitski, V. V., Dagotto, E. & Harmon, B. N. Numerical modeling of the central spin problem using the spin-coherent-state P representation. Phys. Rev. Lett. 97, 037204 (2006).

    Article  ADS  Google Scholar 

  8. Faribault, A. & Schuricht, D. Spin decoherence due to a randomly fluctuating spin bath. Phys. Rev. B 88, 085323 (2013).

    Article  ADS  Google Scholar 

  9. Braun, P.-F. et al. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett. 94, 116601 (2005).

    Article  ADS  Google Scholar 

  10. Dou, X. M., Sun, B. Q., Jiang, D. S., Ni, H. Q. & Niu, Z. C. Electron spin relaxation in a single InAs quantum dot measured by tunable nuclear spins. Phys. Rev. B 84, 033302 (2011).

    Article  ADS  Google Scholar 

  11. Johnson, A. C. et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925–928 (2005).

    Article  ADS  Google Scholar 

  12. Erlingsson, S. & Nazarov, Y. Evolution of localized electron spin in a nuclear spin environment. Phys. Rev. B 70, 205327 (2004).

    Article  ADS  Google Scholar 

  13. Testelin, C., Bernardot, F., Eble, B. & Chamarro, M. Hole-spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B 79, 195440 (2009).

    Article  ADS  Google Scholar 

  14. Abragam, A. The Principles of Nuclear Magnetism (Clarendon, 1973).

    Google Scholar 

  15. Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008).

    Article  ADS  Google Scholar 

  16. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  17. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  18. Zhang, W., Dobrovitski, V. V., Al-Hassanieh, K. A., Dagotto, E. & Harmon, B. N. Hyperfine interaction induced decoherence of electron spins in quantum dots. Phys. Rev. B 74, 205313 (2006).

    Article  ADS  Google Scholar 

  19. Hackmann, J. & Anders, F. B. Spin noise in the anisotropic central spin model. Phys. Rev. B 89, 045317 (2014).

    Article  ADS  Google Scholar 

  20. Chen, G., Bergman, D. L. & Balents, L. Semiclassical dynamics and long-time asymptotics of the central-spin problem in a quantum dot. Phys. Rev. B 76, 045312 (2007).

    Article  ADS  Google Scholar 

  21. Maletinsky, P., Kroner, M. & Imamoglu, A. Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments. Nature Phys. 5, 407–411 (2009).

    Article  ADS  Google Scholar 

  22. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  ADS  Google Scholar 

  23. Müller, K. et al. All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current. Sci. Rep. 3, 1906 (2013).

    Article  Google Scholar 

  24. Heiss, D. et al. Selective optical charge generation, storage, and readout in a single self-assembled quantum dot. Appl. Phys. Lett. 94, 072108 (2009).

    Article  ADS  Google Scholar 

  25. Bulutay, C. Quadrupolar spectra of nuclear spins in strained InxGa1−xAs quantum dots. Phys. Rev. B 85, 115313 (2012).

    Article  ADS  Google Scholar 

  26. Chekhovich, E. A. et al. Structural analysis of strained quantum dots using nuclear magnetic resonance. Nature Nanotech. 7, 646–650 (2012).

    Article  ADS  Google Scholar 

  27. Chekhovich, E. A., Hopkinson, M., Skolnick, M. S. & Tartakovskii, A. I. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain. Nature Commun. 6, 6348 (2015).

    Article  ADS  Google Scholar 

  28. Jovanov, V., Kapfinger, S., Bichler, M., Abstreiter, G. & Finley, J. J. Direct observation of metastable hot trions in an individual quantum dot. Phys. Rev. B 84, 235321 (2011).

    Article  ADS  Google Scholar 

  29. Akimov, I. A., Hundt, A., Flissikowski, T. & Henneberger, F. Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot. Appl. Phys. Lett. 81, 4730–4732 (2002).

    Article  ADS  Google Scholar 

  30. Sinitsyn, N. A., Li, Y., Crooker, S. A., Saxena, A. & Smith, D. L. Role of nuclear quadrupole coupling on decoherence and relaxation of central spins in quantum dots. Phys. Rev. Lett. 109, 166605 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to L. Cywinski for most useful and enlightening discussions. Furthermore, we gratefully acknowledge financial support from the Deutsche Forschungs Gemeinschaft via SFB-631, and the Nanosystems Initiative Munich, the EU via S3 Nano, and BaCaTeC. K.M. acknowledges financial support from the Alexander von Humboldt Foundation and the ARO (Grant W911NF-13-1-0309). Work at LANL was supported by the US Department of Energy, Contract No. DE-AC52-06NA25396, and the LDRD program at LANL.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and D.R. performed the experiments and data analysis with T.S. and P.-L.A. providing expertise. A.R. carried out the sample processing. F.L. and N.A.S. performed the theoretical calculations. A.B., P.-L.A., K.M., F.L., N.A.S. and J.J.F. wrote the article. A.B., K.M. and J.J.F. conceived, led and managed the project.

Corresponding author

Correspondence to Jonathan J. Finley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2847 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechtold, A., Rauch, D., Li, F. et al. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot. Nature Phys 11, 1005–1008 (2015). https://doi.org/10.1038/nphys3470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing