Abstract
The formation of gaps—forbidden ranges in the values of a physical parameter—is common to a variety of physical systems: from energy bandgaps of electrons in periodic lattices1 and their analogues in photonic2, phononic3 and plasmonic4 systems to pseudo-energy gaps in aperiodic quasicrystals5. Here, we predict a thermalization gap for light propagating in finite disordered structures characterized by disorder-immune chiral symmetry6—the appearance of the eigenvalues and eigenvectors in skew-symmetric pairs. In these systems, the span of sub-thermal photon statistics is inaccessible to input coherent light, which—once the steady state is reached—always emerges with super-thermal statistics no matter how small the disorder level. We formulate an independent constraint of the input field for the chiral symmetry to be activated and the gap to be observed. This unique feature enables a new form of photon-statistics interferometry: the deterministic tuning of photon statistics via controlled excitation symmetry breaking realized by sculpting the amplitude or phase of the input coherent field.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Brooks/Cole, Cengage Learning, 1976).
Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 2008).
Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).
Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmons subwavelength optics. Nature 424, 824–830 (2003).
Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541–1544 (2011).
Gade, R. Anderson localization for sublattice models. Nucl. Phys. B 398, 499–515 (1993).
Mehta, M. L. Random Matrices (Elsevier/Academic Press, 2004).
Evers, F. & Mirlin, A. D. Anderson transition. Rev. Mod. Phys. 80, 1355–1417 (2008).
Qi, X. L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Hatsuda, T. & Kunihiro, T. QCD Phenomenology based on a chiral effective Lagrangian. Phys. Rep. 247, 221–367 (1994).
Inui, M., Trugman, S. A. & Abrahams, E. Unusual properties of midband states in systems with off-diagonal disorder. Phys. Rev. B 49, 3190–3196 (1994).
Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).
Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).
Soukoulis, C. M. & Economou, E. N. Off-diagonal disorder in one-dimensional systems. Phys. Rev. B 24, 5698–5702 (1981).
Penrose, R. Pentaplexity: A class of non-periodic tilings of the plane. Eureka 39, 32–37 (1978).
De Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47–50 (1989).
Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).
Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).
Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nature Photon. 7, 197–204 (2013).
Lahini, Y. et al. Hanbury Brown and Twiss correlations of Anderson localized waves. Phys. Rev. A 84, 041806 (2011).
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Szameit, A. et al. Polychromatic dynamic localization in curved photonic lattices. Nature Phys. 5, 271–275 (2009).
Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Photon. 7, 153–158 (2013).
Di Giuseppe, G. et al. Einstein–Podolsky–Rosen spatial entanglement in ordered and Anderson photonic lattices. Phys. Rev. Lett. 110, 150503 (2013).
Topolancik, J., Ilic, B. & Vollmer, F. Experimental observation of strong photon localization in disordered photonic crystal waveguides. Phys. Rev. Lett. 99, 253901 (2007).
Mookherjea, S., Park, J. S., Yang, S.-H. & Bandaru, P. R. Localization in silicon nanophotonic slow-light waveguides. Nature Photon. 2, 90–93 (2008).
Karbasi, S. et al. Image transport through a disordered optical fibre mediated by transverse Anderson localization. Nat. Commun. 5, 3362 (2014).
Kondakci, H. E., Abouraddy, A. F. & Saleh, B. E. A. Discrete Anderson speckle. Optica 2, 201–209 (2015).
Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
Saleh, B. E. A. Photoelectron Statistics (Springer, 1978).
Martin, L. Anderson localization in optical waveguide arrays with off-diagonal coupling disorder. Opt. Express 19, 13636–13646 (2011).
Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 3, 133–164 (1980).
Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).
Acknowledgements
The authors thank the Advanced Research Computing Center at the University of Central Florida for access to the high-performance computing cluster. We thank D. N. Christodoulides and A. Keles for helpful discussions.
Author information
Authors and Affiliations
Contributions
H.E.K., A.F.A. and B.E.A.S. conceived the concept. H.E.K. carried out all the simulations and analysis. All authors contributed to writing the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 3397 kb)
Rights and permissions
About this article
Cite this article
Kondakci, H., Abouraddy, A. & Saleh, B. A photonic thermalization gap in disordered lattices. Nature Phys 11, 930–935 (2015). https://doi.org/10.1038/nphys3482
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys3482
This article is cited by
-
Multiphoton quantum van Cittert-Zernike theorem
npj Quantum Information (2023)
-
Observation of the modification of quantum statistics of plasmonic systems
Nature Communications (2021)
-
Lattice topology dictates photon statistics
Scientific Reports (2017)
-
Chaos from symmetry
Nature Physics (2015)