Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A photonic thermalization gap in disordered lattices

Abstract

The formation of gaps—forbidden ranges in the values of a physical parameter—is common to a variety of physical systems: from energy bandgaps of electrons in periodic lattices1 and their analogues in photonic2, phononic3 and plasmonic4 systems to pseudo-energy gaps in aperiodic quasicrystals5. Here, we predict a thermalization gap for light propagating in finite disordered structures characterized by disorder-immune chiral symmetry6—the appearance of the eigenvalues and eigenvectors in skew-symmetric pairs. In these systems, the span of sub-thermal photon statistics is inaccessible to input coherent light, which—once the steady state is reached—always emerges with super-thermal statistics no matter how small the disorder level. We formulate an independent constraint of the input field for the chiral symmetry to be activated and the gap to be observed. This unique feature enables a new form of photon-statistics interferometry: the deterministic tuning of photon statistics via controlled excitation symmetry breaking realized by sculpting the amplitude or phase of the input coherent field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: One-dimensional lattices with diagonal and off-diagonal disorder.
Figure 2: Emergence of a thermalization gap in disordered lattices.
Figure 3: Asymptotic normalized intensity correlation as a function of lattice size.
Figure 4: Chiral-symmetry-breaking for deterministic control over photon statistics in a disordered optical lattice.

Similar content being viewed by others

References

  1. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Brooks/Cole, Cengage Learning, 1976).

    MATH  Google Scholar 

  2. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 2008).

    MATH  Google Scholar 

  3. Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    Article  ADS  Google Scholar 

  4. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmons subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  5. Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541–1544 (2011).

    Article  ADS  Google Scholar 

  6. Gade, R. Anderson localization for sublattice models. Nucl. Phys. B 398, 499–515 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  7. Mehta, M. L. Random Matrices (Elsevier/Academic Press, 2004).

    MATH  Google Scholar 

  8. Evers, F. & Mirlin, A. D. Anderson transition. Rev. Mod. Phys. 80, 1355–1417 (2008).

    Article  ADS  Google Scholar 

  9. Qi, X. L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Google Scholar 

  10. Hatsuda, T. & Kunihiro, T. QCD Phenomenology based on a chiral effective Lagrangian. Phys. Rep. 247, 221–367 (1994).

    Article  ADS  Google Scholar 

  11. Inui, M., Trugman, S. A. & Abrahams, E. Unusual properties of midband states in systems with off-diagonal disorder. Phys. Rev. B 49, 3190–3196 (1994).

    Article  ADS  Google Scholar 

  12. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

    Article  ADS  Google Scholar 

  13. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  14. Soukoulis, C. M. & Economou, E. N. Off-diagonal disorder in one-dimensional systems. Phys. Rev. B 24, 5698–5702 (1981).

    Article  ADS  Google Scholar 

  15. Penrose, R. Pentaplexity: A class of non-periodic tilings of the plane. Eureka 39, 32–37 (1978).

    MATH  Google Scholar 

  16. De Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47–50 (1989).

    Article  ADS  Google Scholar 

  17. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  ADS  Google Scholar 

  18. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Article  ADS  Google Scholar 

  19. Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nature Photon. 7, 197–204 (2013).

    Article  ADS  Google Scholar 

  20. Lahini, Y. et al. Hanbury Brown and Twiss correlations of Anderson localized waves. Phys. Rev. A 84, 041806 (2011).

    Article  ADS  Google Scholar 

  21. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  22. Szameit, A. et al. Polychromatic dynamic localization in curved photonic lattices. Nature Phys. 5, 271–275 (2009).

    Article  ADS  Google Scholar 

  23. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Photon. 7, 153–158 (2013).

    Article  ADS  Google Scholar 

  24. Di Giuseppe, G. et al. Einstein–Podolsky–Rosen spatial entanglement in ordered and Anderson photonic lattices. Phys. Rev. Lett. 110, 150503 (2013).

    Article  ADS  Google Scholar 

  25. Topolancik, J., Ilic, B. & Vollmer, F. Experimental observation of strong photon localization in disordered photonic crystal waveguides. Phys. Rev. Lett. 99, 253901 (2007).

    Article  ADS  Google Scholar 

  26. Mookherjea, S., Park, J. S., Yang, S.-H. & Bandaru, P. R. Localization in silicon nanophotonic slow-light waveguides. Nature Photon. 2, 90–93 (2008).

    Article  ADS  Google Scholar 

  27. Karbasi, S. et al. Image transport through a disordered optical fibre mediated by transverse Anderson localization. Nat. Commun. 5, 3362 (2014).

    Article  ADS  Google Scholar 

  28. Kondakci, H. E., Abouraddy, A. F. & Saleh, B. E. A. Discrete Anderson speckle. Optica 2, 201–209 (2015).

    Article  ADS  Google Scholar 

  29. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  30. Saleh, B. E. A. Photoelectron Statistics (Springer, 1978).

    Book  Google Scholar 

  31. Martin, L. Anderson localization in optical waveguide arrays with off-diagonal coupling disorder. Opt. Express 19, 13636–13646 (2011).

    Article  ADS  Google Scholar 

  32. Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 3, 133–164 (1980).

    MathSciNet  MATH  Google Scholar 

  33. Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Advanced Research Computing Center at the University of Central Florida for access to the high-performance computing cluster. We thank D. N. Christodoulides and A. Keles for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.E.K., A.F.A. and B.E.A.S. conceived the concept. H.E.K. carried out all the simulations and analysis. All authors contributed to writing the paper.

Corresponding authors

Correspondence to Ayman F. Abouraddy or Bahaa E. A. Saleh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondakci, H., Abouraddy, A. & Saleh, B. A photonic thermalization gap in disordered lattices. Nature Phys 11, 930–935 (2015). https://doi.org/10.1038/nphys3482

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3482

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing