Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gate-tunable topological valley transport in bilayer graphene

Abstract

Valley pseudospin, the quantum degree of freedom characterizing the degenerate valleys in energy bands1, is a distinct feature of two-dimensional Dirac materials1,2,3,4,5. Similar to spin, the valley pseudospin is spanned by a time-reversal pair of states, although the two valley pseudospin states transform to each other under spatial inversion. The breaking of inversion symmetry induces various valley-contrasted physical properties; for instance, valley-dependent topological transport is of both scientific and technological interest2,3,4,5. Bilayer graphene is a unique system whose intrinsic inversion symmetry can be controllably broken by a perpendicular electric field, offering a rare possibility for continuously tunable topological valley transport. We used a perpendicular gate electric field to break the inversion symmetry in bilayer graphene, and a giant nonlocal response was observed as a result of the topological transport of the valley pseudospin. We further showed that the valley transport is fully tunable by external gates, and that the nonlocal signal persists up to room temperature and over long distances. These observations challenge the current understanding of topological valley transport in a gapped system, and the robust topological transport may lead to future valleytronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual-gated BLG FET and its local and nonlocal characterization.
Figure 2: Local and nonlocal response of biased BLG.
Figure 3: Temperature and length dependence of the local and nonlocal responses of biased BLG.
Figure 4: Bulk versus edge nonlocal transport.

Similar content being viewed by others

References

  1. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    Article  ADS  Google Scholar 

  2. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  ADS  Google Scholar 

  3. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  4. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    Article  ADS  Google Scholar 

  5. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  6. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  7. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  8. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011).

    Article  ADS  Google Scholar 

  9. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  ADS  Google Scholar 

  10. Balakrishnan, J., Kok Wai Koon, G., Jaiswal, M., Castro Neto, A. H. & Özyilmaz, B. Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Phys. 9, 284–287 (2013).

    Article  ADS  Google Scholar 

  11. Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    Article  ADS  Google Scholar 

  12. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  ADS  Google Scholar 

  13. Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nature Phys. 9, 149–153 (2013).

    Article  ADS  Google Scholar 

  14. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

  15. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  ADS  Google Scholar 

  16. Zou, K. & Zhu, J. Transport in gapped bilayer graphene: The role of potential fluctuations. Phys. Rev. B 82, 081407 (2010).

    Article  ADS  Google Scholar 

  17. Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).

    Article  ADS  Google Scholar 

  18. Abanin, D. A., Shytov, A. V., Levitov, L. S. & Halperin, B. I. Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime. Phys. Rev. B 79, 035304 (2009).

    Article  ADS  Google Scholar 

  19. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    Article  ADS  Google Scholar 

  20. Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    Article  ADS  Google Scholar 

  21. Engels, S. et al. Limitations to carrier mobility and phase-coherent transport in bilayer graphene. Phys. Rev. Lett. 113, 126801 (2014).

    Article  ADS  Google Scholar 

  22. Couto, N. J. G. et al. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 4, 041019 (2014).

    Google Scholar 

  23. Wu, S., Yang, R., Shi, D. & Zhang, G. Identification of structural defects in graphitic materials by gas-phase anisotropic etching. Nanoscale 4, 2005–2009 (2012).

    Article  ADS  Google Scholar 

  24. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  25. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    ADS  Google Scholar 

  26. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  27. Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).

    Article  ADS  Google Scholar 

  28. Li, J., Martin, I., Büttiker, M. & Morpurgo, A. F. Topological origin of subgap conductance in insulating bilayer graphene. Nature Phys. 7, 38–42 (2011).

    Article  ADS  Google Scholar 

  29. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  ADS  Google Scholar 

  30. Lensky, Y. D., Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological valley currents in gapped Dirac materials. Phys. Rev. Lett. 114, 256601 (2015).

    Article  ADS  Google Scholar 

  31. Liu, X.-J., Liu, X. & Sinova, J. Scaling of the anomalous Hall effect in the insulating regime. Phys. Rev. B 84, 165304 (2011).

    Article  ADS  Google Scholar 

  32. Burkov, A. A. & Balents, L. Anomalous Hall effect in ferromagnetic semiconductors in the hopping transport regime. Phys. Rev. Lett. 91, 057202 (2003).

    Article  ADS  Google Scholar 

  33. Lyanda-Geller, Y. et al. Charge transport in manganites: Hopping conduction, the anomalous Hall effect, and universal scaling. Phys. Rev. B 63, 184426 (2001).

    Article  ADS  Google Scholar 

  34. Shimazaki, Y. et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Preprint at http://arxiv.org/abs/1501.04776 (2015).

  35. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene. Nature Phys. 7, 621–625 (2011).

    Article  ADS  Google Scholar 

  36. Lindvall, N., Kalabukhov, A. & Yurgens, A. Cleaning graphene using atomic force microscope. J. Appl. Phys. 111, 064904 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Q. Niu, D.-H. Lee, F. Wang, J. Shi, J. Xiao, P. Kim and J. Zhu for helpful discussions. Part of the sample fabrication was performed at the Fudan Nano-fabrication Lab. M.S., G.C., L.M. and Y.Z. acknowledge the financial support of the National Basic Research Program of China (973 Program) under grant nos 2013CB921902 and 2011CB921802, and NSF of China under grant nos 11034001 and 11425415. W.Y. acknowledges support from the University of Hong Kong (OYRA), and the RGC of Hong Kong SAR (HKU706412P). W.-Y.S. and D.X. acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Science, under award no. DE-SC0012509. D.T. and X.J. are supported by MOST (grants no. 2015CB921400 and no. 2011CB921802) and NSF of China (grants no. 11374057, no. 11434003 and no. 11421404). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan. T.T. acknowledges support from Grant-in-Aid for Scientific Research (Grant 262480621) and Innovative Areas ‘Nano Informatics’ (Grant 25106006) from JSPS.

Author information

Authors and Affiliations

Authors

Contributions

M.S. fabricated the samples, carried out the measurements, and analysed the data. G.C. helped with sample fabrication. L.M. helped with electrical measurements. W.-Y.S. and D.T. helped with data analysis. K.W. and T.T. grew hBN crystals. Y.Z., D.X., W.Y. and X.J. co-supervised the project. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Yuanbo Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, M., Chen, G., Ma, L. et al. Gate-tunable topological valley transport in bilayer graphene. Nature Phys 11, 1027–1031 (2015). https://doi.org/10.1038/nphys3485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing