Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Remotely induced magnetism in a normal metal using a superconducting spin-valve

Abstract

Superconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics by utilizing the internal spin structure of the superconducting Cooper pair as a new degree of freedom1,2. Its basic building blocks are spin-triplet Cooper pairs with equally aligned spins, which are promoted by proximity of a conventional superconductor to a ferromagnetic material with inhomogeneous macroscopic magnetization3. Using low-energy muon spin-rotation experiments we find an unanticipated effect, in contradiction with the existing theoretical models of superconductivity and ferromagnetism: the appearance of a magnetization in a thin layer of a non-magnetic metal (gold), separated from a ferromagnetic double layer by a 50-nm-thick superconducting layer of Nb. The effect can be controlled either by temperature or by using a magnetic field to control the state of the remote ferromagnetic elements, and may act as a basic building block for a new generation of quantum interference devices based on the spin of a Cooper pair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample architecture and experimental arrangement.
Figure 2: Fit results to LE-μSR data on the NSFnF architecture.
Figure 3: Thin Au cap sample.
Figure 4: Spin-transfer mechanisms.

Similar content being viewed by others

References

  1. Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nature Phys. 11, 307–315 (2015).

    Article  ADS  Google Scholar 

  2. Eschrig, M. Spin-polarized supercurrents for spintronics. Phys. Today 64(1), 43–49 (2011).

    Article  ADS  Google Scholar 

  3. Buzdin, A. I. Proximity effects in superconductor–ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005).

    Article  ADS  Google Scholar 

  4. Jiang, J. S., Davidović, D., Reich, D. H. & Chien, C. L. Oscillatory superconducting transition temperature in Nb/Gd multilayers. Phys. Rev. Lett. 74, 314–317 (1995).

    Article  ADS  Google Scholar 

  5. Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: Evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    Article  ADS  Google Scholar 

  6. Kontos, T. et al. Josephson junction through a thin ferromagnetic layer: Negative coupling. Phys. Rev. Lett. 89, 137007 (2002).

    Article  ADS  Google Scholar 

  7. Demler, E. A., Arnold, G. B. & Beasley, M. R. Superconducting proximity effects in magnetic metals. Phys. Rev. B 55, 15174–15182 (1997).

    Article  ADS  Google Scholar 

  8. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Long-range proximity effects in superconductor–ferromagnet structures. Phys. Rev. Lett. 86, 4096–4099 (2001).

    Article  ADS  Google Scholar 

  9. Kadigrobov, A., Shekhter, R. I. & Jonson, M. Quantum spin fluctuations as a source of long-range proximity effects in diffusive ferromagnet-superconductor structures. Europhys. Lett. 54, 394–400 (2001).

    Article  ADS  Google Scholar 

  10. Eschrig, M., Kopu, J., Cuevas, J. C. & Schön, G. Theory of half-metal/superconductor heterostructures. Phys. Rev. Lett. 90, 137003 (2003).

    Article  ADS  Google Scholar 

  11. Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2 . Nature 439, 825–827 (2006).

    Article  ADS  Google Scholar 

  12. Robinson, J. W. A., Witt, J. D. S. & Blamire, M. G. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).

    Article  ADS  Google Scholar 

  13. Khaire, T. S., Khasawneh, M. A., Pratt, W. P. Jr & Birge, N. O. Observation of spin-triplet superconductivity in Co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).

    Article  ADS  Google Scholar 

  14. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Induced ferromagnetism due to superconductivity in superconductor–ferromagnet structures. Phys. Rev. B 69, 174504 (2004).

    Article  ADS  Google Scholar 

  15. Löfwander, T., Champel, T., Durst, J. & Eschrig, M. Interplay of magnetic and superconducting proximity effects in ferromagnet–superconductor–ferromagnet trilayers. Phys. Rev. Lett. 95, 187003 (2005).

    Article  ADS  Google Scholar 

  16. Pugach, N. G. & Buzdin, A. I. Magnetic moment manipulation by triplet Josephson current. Appl. Phys. Lett. 101, 242602 (2012).

    Article  ADS  Google Scholar 

  17. Salikhov, R. I. et al. Experimental observation of the spin screening effect in superconductor/ferromagnet thin film heterostructures. Phys. Rev. Lett. 102, 087003 (2009).

    Article  ADS  Google Scholar 

  18. Xia, J., Shelukhin, V., Karpovski, M., Kapitulnik, A. & Palevski, A. Inverse proximity effect in superconductor–ferromagnet bilayer structures. Phys. Rev. Lett. 102, 087004 (2009).

    Article  ADS  Google Scholar 

  19. Khaydukov, Y. N. et al. On the feasibility to study inverse proximity effect in a single S/F bilayer by polarized neutron reflectometry. JETP Lett. 98, 116–120 (2013).

    Article  ADS  Google Scholar 

  20. Flokstra, M. G. et al. Measurement of the spatial extent of inverse proximity in a Py/Nb/Py superconducting trilayer using low-energy muon-spin rotation. Phys. Rev. B 89, 054510 (2014).

    Article  ADS  Google Scholar 

  21. Fominov, Y. V. et al. Superconducting triplet spin valve. JETP Lett. 91, 308–313 (2010).

    Article  ADS  Google Scholar 

  22. Leksin, P. V. et al. Evidence for triplet superconductivity in a superconductor–ferromagnet spin valve. Phys. Rev. Lett. 109, 057005 (2012).

    Article  ADS  Google Scholar 

  23. Zhu, L. Y. et al. Unanticipated proximity behavior in ferromagnet–superconductor heterostructures with controlled magnetic noncollinearity. Phys. Rev. Lett. 110, 177001 (2013).

    Article  ADS  Google Scholar 

  24. Flokstra, M. G. et al. Controlled suppression of superconductivity by the generation of polarized Cooper pairs in spin-valve structures. Phys. Rev. B 91, 060501(R) (2015).

    Article  ADS  Google Scholar 

  25. Bakule, P. & Morenzoni, E. Generation and applications of slow polarized muons. Contemp. Phys. 45, 203–225 (2004).

    Article  ADS  Google Scholar 

  26. Noh, T., Houzet, M., Meyer, J. S. & Chandrasekhar, V. Nonlocal spin correlations mediated by a superconductor. Phys. Rev. B 87, 220502(R) (2013).

    Article  ADS  Google Scholar 

  27. Sengupta, K. & Yakovenko, V. M. Spontaneous spin accumulation in singlet-triplet Josephson junctions. Phys. Rev. Lett. 101, 187003 (2008).

    Article  ADS  Google Scholar 

  28. Sears, M. R. & Saslow, W. M. Spin accumulation at ferromagnet/nonmagnetic material interfaces. Phys. Rev. B 85, 014404 (2012).

    Article  ADS  Google Scholar 

  29. Manchon, A., Ryzhanova, N., Vedyayev, A., Chschiev, M. & Dieny, B. Description of current-driven torques in magnetic tunnel junctions. J. Phys. Condens. Matter 20, 145208 (2008).

    Article  ADS  Google Scholar 

  30. Grein, R., Eschrig, M., Metalidis, G. & Schön, G. Spin-dependent Cooper pair phase and pure spin supercurrents in strongly polarized ferromagnets. Phys. Rev. Lett. 102, 227005 (2009).

    Article  ADS  Google Scholar 

  31. Alidoust, M., Linder, J., Rashedi, G., Yokoyama, T. & Sudbø, A. Spin-polarized Josephson current in superconductor/ferromagnet/superconductor junctions with inhomogeneous magnetization. Phys. Rev. B 81, 014512 (2010).

    Article  ADS  Google Scholar 

  32. Alidoust, M. & Halterman, K. Spontaneous edge accumulation of spin currents in finite-size two-dimensional diffusive spin-orbit coupled SFS heterostructures. New J. Phys. 17, 033001 (2015).

    Article  ADS  Google Scholar 

  33. Prokscha, T. et al. The new μE4 beam at PSI: A hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nucl. Instrum. Methods A 595, 317–331 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the EPSRC through Grants No. EP/J01060X, No. EP/J010626/1, No. EP/J010650/1, No. EP/J010634/1 and No. EP/J010618/1, support of a studentship supported by JEOL Europe and the ISIS Neutron and Muon Source, and the support of the RFBR via awards No. 13-02-01452-a, No. 15-52-10045-Ko-a and No. 14-02-90018 Bel-a. All muon experiments were undertaken courtesy of the Paul Scherrer Institute. We thank J. M. Porro for assistance in acquiring the AFM images.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and G.B. developed the samples; M.G.F., S.L.L., N.S., J.F.K.C., H.L. and T.P. performed the muon measurements, in which H.L., A.S. and T.P. provided the beamline support; M.G.F., S.L.L., N.S., J.F.K.C., P.J.C., S.J.B., C.J.K. and S.L. performed various support and characterization measurements; A.I., N.P. and M.E. provided theoretical interpretation of the data and helped writing the paper; G.B. and M.E. helped designing the study; M.G.F. and S.L.L. designed the study, analysed data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to M. G. Flokstra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flokstra, M., Satchell, N., Kim, J. et al. Remotely induced magnetism in a normal metal using a superconducting spin-valve. Nature Phys 12, 57–61 (2016). https://doi.org/10.1038/nphys3486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing