Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of a d-wave gap in electron-doped Sr2IrO4

Abstract

High-temperature superconductivity in cuprates emerges out of a highly enigmatic ‘pseudogap’ metal phase. The mechanism of high-temperature superconductivity is probably encrypted in the elusive relationship between the two phases, which spectroscopically is manifested as Fermi arcs—disconnected segments of zero-energy states—collapsing into d-wave point nodes upon entering the superconducting phase. Here, we reproduce this distinct cuprate phenomenology in the 5d transition-metal oxide Sr2IrO4. Using angle-resolved photoemission, we show that the clean, low-temperature phase of 6–8% electron-doped Sr2IrO4 has gapless excitations only at four isolated points in the Brillouin zone, with a predominant d-wave symmetry of the gap. Our work thus establishes a connection between the low-temperature d-wave instability and the previously reported high-temperature Fermi arcs in electron-doped Sr2IrO4 (ref. 1). Although the physical origin of the d-wave gap remains to be understood, Sr2IrO4 is the first non-cuprate material to spectroscopically reproduce the complete phenomenology of the cuprates, thus offering a new material platform to investigate the relationship between the pseudogap and the d-wave gap.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-temperature nodal Fermi surface and high-temperature Fermi arcs.
Figure 2: Temperature dependence of the gap.
Figure 3: Momentum dependence of the gap at T = 10 K.
Figure 4: Illustration of our materials scheme to access low-temperature spectral functions for electron-doped Sr2IrO4.

Similar content being viewed by others

References

  1. Kim, Y. K. et al. Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet. Science 345, 187–190 (2014).

    Article  ADS  Google Scholar 

  2. Kim, B. J. et al. Novel Jeff = 1/2 Mott state induced by relativistic spin–orbit coupling in Sr2IrO4 . Phys. Rev. Lett. 101, 076402 (2008).

    Article  ADS  Google Scholar 

  3. Kim, B. J. et al. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4 . Science 323, 1329–1332 (2009).

    Article  ADS  Google Scholar 

  4. Crawford, M. K. et al. Structural and magnetic studies of Sr2IrO4 . Phys. Rev. B 49, 9198–9201 (1994).

    Article  ADS  Google Scholar 

  5. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  ADS  Google Scholar 

  6. Kim, J. et al. Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic X-ray scattering: Establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177003 (2012).

    Article  ADS  Google Scholar 

  7. Fujiyama, S. et al. Two-dimensional Heisenberg behavior of Jeff = 1/2 isospins in the paramagnetic state of the spin-orbital Mott insulator Sr2IrO4 . Phys. Rev. Lett. 108, 247212 (2012).

    Article  ADS  Google Scholar 

  8. Jin, H., Jeong, H., Ozaki, T. & Yu, J. Anisotropic exchange interactions of spin–orbit-integrated states in Sr2IrO4 . Phys. Rev. B 80, 075112 (2009).

    Article  ADS  Google Scholar 

  9. Wang, F. & Senthil, T. Twisted Hubbard model for Sr2IrO4: Magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2010).

    Article  ADS  Google Scholar 

  10. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093 (1998).

    Article  ADS  Google Scholar 

  11. Mannella, N. et al. Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites. Nature 438, 474–478 (2005).

    Article  ADS  Google Scholar 

  12. Uchida, M. et al. Pseudogap of metallic layered nickelate R2−xSrxNiO4 (R = Nd, Eu) crystals measured usingangle-resolved photoemission spectroscopy. Phys. Rev. Lett. 106, 027001 (2011).

    Article  ADS  Google Scholar 

  13. Lee, W. et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007).

    Article  ADS  Google Scholar 

  14. Valla, T., Fedorov, A., Lee, J., Davis, J. & Gu, G. The ground state of the pseudogap in cuprate superconductors. Science 314, 1914–1916 (2006).

    Article  ADS  Google Scholar 

  15. Chatterjee, U. et al. Observation of a d-wave nodal liquid in highly underdoped Bi2Sr2CaCu2O8+δ . Nature Phys. 6, 99–103 (2009).

    Article  ADS  Google Scholar 

  16. Balents, L., Fisher, M. & Nayak, C. Nodal liquid theory of the pseudo-gap phase of high-TC superconductors. Int. J. Mod. Phys. B 12, 1033–1068 (1998).

    Article  ADS  Google Scholar 

  17. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 093503 (2001).

    Article  ADS  Google Scholar 

  18. Affleck, I. & Marston, J. B. Large-n limit of the Hubbard–Heisenberg model. Phys. Rev. B 39, 11538–11558 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  19. Hashimoto, M., Vishik, I., He, R.-H., Devereaux, T. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nature Phys. 10, 483–495 (2014).

    Article  ADS  Google Scholar 

  20. Yoshida, T., Hashimoto, M., Vishik, I. M., Shen, Z. X. & Fujimori, A. Pseudogap, superconducting gap, and Fermi arc in high-TC cuprates revealed by angle-resolved photoemission spectroscopy. J. Phys. Soc. Jpn 81, 011006 (2012).

    Article  ADS  Google Scholar 

  21. Watanabe, H., Shirakawa, T. & Yunoki, S. Monte Carlo study of an unconventional superconducting phase in iridium oxide Jeff = 1/2 Mott insulators induced by carrier doping. Phys. Rev. Lett. 110, 027002 (2013).

    Article  ADS  Google Scholar 

  22. Meng, Z. Y., Kim, Y. B. & Kee, H.-Y. Odd-parity triplet superconducting phase in multiorbital materials with a strong spin–orbit coupling: Application to doped Sr2IrO4 . Phys. Rev. Lett. 113, 177003 (2014).

    Article  ADS  Google Scholar 

  23. Keimer, B., Kivelson, S., Norman, M., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  Google Scholar 

  24. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article  ADS  Google Scholar 

  25. Varma, C. M. Theory of the pseudo gap state of the cuprates. Phys. Rev. B 73, 155113 (2006).

    Article  ADS  Google Scholar 

  26. Fauqué, B. et al. Magnetic order in the pseudogap phase of high-TC superconductors. Phys. Rev. Lett. 96, 197001 (2006).

    Article  ADS  Google Scholar 

  27. Feng, D. et al. Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ . Science 289, 277–281 (2000).

    Article  ADS  Google Scholar 

  28. Cao, Y. et al. Hallmarks of the Mott-metal crossover in the hole doped J = 1/2 Mott insulator Sr2IrO4. Preprint at http://arxiv.org/abs/1406.4978 (2014).

  29. Brouet, V. et al. Transfer of spectral weight across the gap of Sr2IrO4 induced by La doping. Phys. Rev. B 92, 081117 (2015).

    Article  ADS  Google Scholar 

  30. de la Torre, A. et al. Collapse of the Mott gap and emergence of a nodal liquid in lightly doped Sr2IrO4. Preprint at http://arxiv.org/abs/1506.00616 (2014).

  31. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  ADS  Google Scholar 

  32. Hossain, M. et al. In situ doping control of the surface of high-temperature superconductors. Nature Phys. 4, 527–531 (2008).

    Article  Google Scholar 

  33. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nature Nanotech. 9, 111–115 (2014).

    Article  ADS  Google Scholar 

  34. Cao, G. et al. Anomalous magnetic and transport behavior in the magnetic insulator Sr3Ir2O7 . Phys. Rev. B 66, 214412 (2002).

    Article  ADS  Google Scholar 

  35. Kim, J. et al. Large spin-wave energy gap in the bilayer iridate Sr3Ir2O7: Evidence for enhanced dipolar interactions near the Mott metal–insulator transition. Phys. Rev. Lett. 109, 157402 (2012).

    Article  ADS  Google Scholar 

  36. Chun, S. H. et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3 . Nature Phys. 11, 462–466 (2015).

    Article  ADS  Google Scholar 

  37. Yan, Y. J. et al. Signature of high temperature superconductivity in electron doped Sr2IrO4. Preprint at http://arxiv.org/abs/1506.06557 (2015).

Download references

Acknowledgements

We acknowledge helpful discussions with C. Kim, G. Khaliullin, B. Keimer, M. Le Tacon, G. Jackeli, J. F. Mitchell, M. Norman and J. W. Allen. We thank B. Y. Kim for technical assistance. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported by IBS-R009-D1.

Author information

Authors and Affiliations

Authors

Contributions

B.J.K. conceived the project. Y.K.K. and B.J.K. performed the ARPES experiment with support from J.D.D. N.H.S. grew and characterized the single crystals. Y.K.K. analysed the data. All authors discussed the results. B.J.K. led the manuscript preparation with contributions from all authors.

Corresponding author

Correspondence to B. J. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Sung, N., Denlinger, J. et al. Observation of a d-wave gap in electron-doped Sr2IrO4. Nature Phys 12, 37–41 (2016). https://doi.org/10.1038/nphys3503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing